(本小題12分)
已知橢圓,斜率為的直線(xiàn)交橢圓兩點(diǎn),且點(diǎn)在直線(xiàn)的上方,
(1)求直線(xiàn)軸交點(diǎn)的橫坐標(biāo)的取值范圍;
(2)證明:的內(nèi)切圓的圓心在一條直線(xiàn)上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分) 如圖,設(shè)P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且MD=PD.

(Ⅰ)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(Ⅱ)求過(guò)點(diǎn)(3,0)且斜率為的直線(xiàn)被C所截線(xiàn)段的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分13分)設(shè)橢圓的右焦點(diǎn)為,直線(xiàn)軸交于點(diǎn),若(其中為坐標(biāo)原點(diǎn)).
(1)求橢圓的方程;
(2)設(shè)是橢圓上的任意一點(diǎn),為圓的任意一條直徑(、為直徑的兩個(gè)端點(diǎn)),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

若拋物線(xiàn)y2=-2px(p>0)上有一點(diǎn)M,其橫坐標(biāo)為-9.它到焦點(diǎn)的距離為10,求拋物線(xiàn)方程和M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知A、B、C是橢圓上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為,BC過(guò)橢圓m的中心,且

(1)求橢圓的方程;
(2)過(guò)點(diǎn)的直線(xiàn)l(斜率存在時(shí))與橢圓m交于兩點(diǎn)P,Q,
設(shè)D為橢圓m與y軸負(fù)半軸的交點(diǎn),且,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓中心在坐標(biāo)原點(diǎn),是它的兩個(gè)頂點(diǎn),直線(xiàn)與AB相交于點(diǎn)D,與橢圓相交于E、F兩點(diǎn).
(Ⅰ)若,求的值;
(Ⅱ)求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(14分)在直角坐標(biāo)系中橢圓的左、右焦點(diǎn)分別為.其中也是拋物線(xiàn)的焦點(diǎn),點(diǎn)在第一象限的交點(diǎn),且.
(1)求的方程;(6分)
(2)平面上的點(diǎn)滿(mǎn)足,直線(xiàn),且與交于、兩點(diǎn),若,求直線(xiàn)的方程. (8分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,記點(diǎn)P的軌跡為E.
(1)求軌跡E的方程;
(2)設(shè)直線(xiàn)l過(guò)點(diǎn)F2且與軌跡E交于P、Q兩點(diǎn),若無(wú)論直線(xiàn)l繞點(diǎn)F2怎樣轉(zhuǎn)動(dòng),在x軸上總存在定點(diǎn),使恒成立,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(18分)已知橢圓C:,在曲線(xiàn)C上是否存在不同兩點(diǎn)A、B關(guān)于直線(xiàn)(m為常數(shù))對(duì)稱(chēng)?若存在,求出滿(mǎn)足的條件;若不存在,說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案