13.已知函數(shù)f(x)=x2+alnx的圖象與直線l:y=-2x+c相切,切點(diǎn)的橫坐標(biāo)為1.
(1)求函數(shù)f(x)的表達(dá)式和直線l的方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

分析 (1)求導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義求直線方程.(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間.

解答 解:(1)因?yàn)閒′(x)=2x+$\frac{a}{x}$,所以-2=f'(1)=2+a,所以a=-4,
所以f(x)=x2-4lnx,
所以f(1)=1,所以切點(diǎn)為(1,1),所以c=3,
所以直線l的方程為y=-2x+3;
(2)因?yàn)閒(x)的定義域?yàn)閤∈(0,+∞),
所以由f′(x)=$\frac{{2x}^{2}-4}{x}$>0得x>$\sqrt{2}$,
由f′(x)<0得0<x<$\sqrt{2}$,
故函數(shù)f(x)的單調(diào)減區(qū)間為(0,$\sqrt{2}$),單調(diào)增區(qū)間為($\sqrt{2}$,+∞).

點(diǎn)評(píng) 本題主要考查導(dǎo)數(shù)的綜合應(yīng)用,要求熟練掌握函數(shù)的單調(diào)性、最值和極值與導(dǎo)數(shù)的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.全集為R,已知數(shù)集A、B在數(shù)軸上表示如圖所示,那么“x∉B”是“x∈A”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合A={(x,y)|y≥|x-l|},B={(x,y)|x-2y+2≥0),C={(x,y)|ax-y+a≥0},若(A∩B)⊆C,則實(shí)數(shù)a的最小值為( 。
A.-2B.一1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=alnx+$\frac{2{a}^{2}}{x}$+x(a≠0).
(1)若函數(shù)y=f(x)在點(diǎn)(1,f(1))處的切線與直線x-2y+3=0垂直,求實(shí)數(shù)a的值;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.平行線3x+4y-9=0和6x+my-1=0的距離是$\frac{17}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.?dāng)?shù)列{an}的通項(xiàng)公式是an=(-1)n(3n-2),則該數(shù)列的前100項(xiàng)之和為( 。
A.-200B.-150C.200D.150

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若函數(shù)f(x)是定義在(-∞,+∞)上的偶函數(shù),x>0時(shí),f(x)單調(diào)遞增,P=f(-π),Q=f(e),$R=f(\sqrt{2})$,則P,Q,R的大小為( 。
A.R>Q>PB.Q>R>PC.P>R>QD.P>Q>R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.曲線$\frac{1}{x^2}+\frac{4}{y^2}=1$上的點(diǎn)到原點(diǎn)O的距離最小值等于3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3=7,S6=39,則使Sn取最大值時(shí)n的值為(  )
A.8B.10C.9或10D.8或9

查看答案和解析>>

同步練習(xí)冊(cè)答案