19.點(diǎn)M(x,y)在橢圓$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{4}$=1上,則點(diǎn)M到直線x+y-4=0的距離的最大值為4$\sqrt{2}$.

分析 設(shè)P點(diǎn)坐標(biāo)是(2$\sqrt{3}$cosα,2sinα),(0°≤α<360°),點(diǎn)P到直線x+y-4=0的距離d公式,利用三角函數(shù)的有界性求出點(diǎn)P到直線x+y-4=0的距離的最大值.

解答 解:可設(shè)P點(diǎn)坐標(biāo)是(2$\sqrt{3}$cosα,2sinα),(0°≤α<360°)
∴點(diǎn)P到直線x+y-4=0的距離d=$\frac{|2\sqrt{3}cosα+2sinα-4|}{\sqrt{2}}$=$\frac{|4sin(α+\frac{π}{3})-4|}{\sqrt{2}}$,
∴dmax=4$\sqrt{2}$.當(dāng)且僅當(dāng)sin($α+\frac{π}{3}$)=-1時(shí),取得最大值.
故答案為:4$\sqrt{2}$.

點(diǎn)評(píng) 本題考查直線與橢圓的位置關(guān)系,解題時(shí)要認(rèn)真審題,注意橢圓的參數(shù)方程、點(diǎn)到直線的距離公式、三角函數(shù)的性質(zhì)的靈活運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在平行四邊形ABCD中,O是對(duì)角線交點(diǎn),下列結(jié)論正確的是( 。
A.$\overrightarrow{AB}=\overrightarrow{CD},\overrightarrow{BC}=\overrightarrow{AD}$B.$\overrightarrow{BO}+\overrightarrow{OD}=\overrightarrow{AD}-\overrightarrow{AB}$C.$\overrightarrow{AD}+\overrightarrow{OD}=\overrightarrow{OA}$D.$\overrightarrow{AD}+\overrightarrow{DC}+\overrightarrow{CB}=\overrightarrow{BA}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.當(dāng)n≥2,n∈N*時(shí),求證:1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$>$\sqrt{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點(diǎn)分別為F1、F2,P為橢圓上一點(diǎn),且PF1⊥PF2,若△PF1F2的面積為9,則b=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)c1,c2,…,cn是a1,a2,…,an的某一排列(a1,a2,…,an均為正數(shù)),則$\frac{{a}_{1}}{{c}_{1}}$+$\frac{{a}_{2}}{{c}_{2}}$+…+$\frac{{a}_{n}}{{c}_{n}}$的最小值是(  )
A.2nB.$\frac{1}{n}$C.$\sqrt{n}$D.n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)f(x)=(m+1)x2-mx+m-1
(1)當(dāng)m=1時(shí),求不等式f(x)>0的解集;
(2)若m>-1,求不等式f(x)>mx的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.下列說(shuō)法中正確的有:①②
①若0<α<$\frac{π}{2}$,則sinα<α<tanα
②若α是第二象限角,則$\frac{α}{2}$是第一或第三象限角;
③與向量$\overrightarrow{a}$=(3,4)共線的單位向量只有$\overrightarrow{a}$=$(\frac{3}{5}$,$\frac{4}{5}$);
④函數(shù)f(x)=2x-8的零點(diǎn)是(3,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知某盒中有10個(gè)燈泡,其中有8個(gè)是正品,2個(gè)是次品.現(xiàn)需要從中取出1個(gè)正品.若每次只取出1個(gè)燈泡,取出后不放回,直到取出2個(gè)正品為止.設(shè)ξ為摸取的次數(shù),則P(ξ=4)=( 。
A.$\frac{4}{15}$B.$\frac{1}{15}$C.$\frac{28}{45}$D.$\frac{14}{45}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知f(α)=cosαsinα
(Ⅰ)若角α終邊上的一點(diǎn)P(-4,3),求f(α)的值;
(Ⅱ)若$f(α)=\frac{1}{2}$,求tanα的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案