【題目】已知定義在R上的函數(shù)g(x)=2x+2﹣x+|x|,則滿足g(2x﹣1)<g(3)的x的取值范圍是
【答案】(﹣1,2)
【解析】∵g(x)=2x+2﹣x+|x|,
∴g(﹣x)=2x+2﹣x+|﹣x|=2x+2﹣x+|x|=g(x),
則函數(shù)g(x)為偶函數(shù),
當(dāng)x≥0時(shí),g(x)=2x+2﹣x+x,
則g′(x)=ln2(2x﹣2﹣x)+1,
則當(dāng)x≥0時(shí),g′(x)>0,則函數(shù)g(x)在[0,+∞)上為增函數(shù),
則不等式g(2x﹣1)<g(3)等價(jià)為g(|2x﹣1|)<g(3),
即|2x﹣1|<3,
即﹣3<2x﹣1<3,
解得﹣1<x<2,
即x的取值范圍是(﹣1,2),
所以答案是:(﹣1,2).
【考點(diǎn)精析】認(rèn)真審題,首先需要了解奇偶性與單調(diào)性的綜合(奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相反的單調(diào)性).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知隨機(jī)變量x服從正態(tài)分布N(3,σ2),且P(x≤4)=0.84,則P(2<x<4)=( )
A.0.84
B.0.68
C.0.32
D.0.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)是定義在(﹣∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且有3f(x)+xf′(x)>0,則
不等式(x+2015)3f(x+2015)+27f(﹣3)>0的解集( )
A.(﹣2018,﹣2015)
B.(﹣∞,﹣2016)
C.(﹣2016,﹣2015)
D.(﹣∞,﹣2012)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=﹣x3的圖象關(guān)于( )
A.y軸對(duì)稱
B.直線y=﹣x對(duì)稱
C.坐標(biāo)原點(diǎn)對(duì)稱
D.直線y=x對(duì)稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|﹣1≤x≤1),集合B={x|x2﹣2x≤0),則集合A∩B=( 。
A.[﹣1,0]
B.[﹣1,2]
C.[0,1]
D.(一∞,1]∪[2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】演繹推理“因?yàn)橹笖?shù)函數(shù)y=ax(a>0且a≠1)是增函數(shù),而y=2x是指數(shù)函數(shù),所以y=2x是增函數(shù)”,所得結(jié)論錯(cuò)誤的原因是( )
A.推理形式錯(cuò)誤
B.小前提錯(cuò)誤
C.大前提錯(cuò)誤
D.小前提、大前提都錯(cuò)誤
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)全集U=R,集合A={x|x2﹣2x﹣3<0},B={x|0<x≤4}.
(1)求A∩B,A∪B;
(2)求(UA)∩(UB).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,可以是奇函數(shù)的為( )
A.f(x)=(x﹣a)|x|,a∈R
B.f(x)=x2+ax+1,a∈R
C.f(x)=log2(ax﹣1),a∈R
D.f(x)=ax+cosx,a∈R
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若全集U=R,集合A={x|x2﹣x﹣2>0},則UA=( )
A.(﹣1,2)
B.(﹣2,1)
C.[﹣1,2]
D.[﹣2,1]
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com