設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,已知3Sn=an+1-2,若a2=1,則a6=( 。
A、512B、16C、64D、256
分析:依題意,可求得數(shù)列{an}從第二項(xiàng)起,是以1為首項(xiàng),4為公比的等比數(shù)列,a2=1,從而可求得答案.
解答:解:∵3Sn=an+1-2,
∴當(dāng)n≥2時(shí),3Sn-1=an-2,
兩式相減得:3an=an+1-an(n≥2),
an+1
an
=4(n≥2),又a2=1,
∴數(shù)列{an}(n≥2)是以1為首項(xiàng),4為公比的等比數(shù)列,
∴a6=a2•44=1×44=256.
故選:D.
點(diǎn)評(píng):本題考查數(shù)列的遞推關(guān)系,著重考查等比數(shù)列的通項(xiàng)公式,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,Sn=(-1)nan-
1
2n
,n∈N+,則a2+a4+a6+…+a100=
1
3
(1-
1
2100
)
1
3
(1-
1
2100
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,Sn=λan-1(λ為常數(shù),n=1,2,3,…).
(I)若a3=a22,求λ的值;
(II)是否存在實(shí)數(shù)λ,使得數(shù)列{an}是等差數(shù)列?若存在,求出λ的值;若不存在.請(qǐng)說(shuō)明理由
(III)當(dāng)λ=2時(shí),若數(shù)列{bn}滿足bn+1=an+bn(n=1,2,3,…),且b1=
3
2
,令cn=
an
(an+1) bn
,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•杭州二模)在等差數(shù)列{an},等比數(shù)列{bn}中,a1=b1=1,a2=b2,a4=b3≠b4
(Ⅰ)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,求anbn和Sn;
(Ⅱ)設(shè)Cn=
anbnSn+1
(n∈N*),Rn=C1+C2+…+Cn,求Rn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,Sn=n2+pn,n∈N*,其中p是實(shí)數(shù).
(1)若數(shù)列{
Sn
}
為等差數(shù)列,求p的值;
(2)若對(duì)于任意的m∈N*,am,a2m,a4m成等比數(shù)列,求p的值;
(3)在(2)的條件下,令b1=a1,bn=a2n-1,其前n項(xiàng)和為Tn,求Tn關(guān)于n的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn為數(shù)列{an}的前N項(xiàng)和,且有S1=a,Sn+Sn-1=3n2,n=2,3,4,…
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{an}是單調(diào)遞增數(shù)列,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案