若P、q是方程數(shù)學(xué)公式的兩實(shí)根,且p,p-q,q成等比數(shù)列.
(1)求正數(shù)t的值.
(2)設(shè)數(shù)學(xué)公式,Sn為數(shù)列{an}的前n項(xiàng)和.求證:數(shù)學(xué)公式

解:(1)∵P、q是方程的兩實(shí)根,
∴p+q=,pq=t2,
∵p,p-q,q成等比數(shù)列,
∴(p-q)2=pq,即(p+q)2=5pq,
∴10=5t2,
∵t>0,∴t=
(2)∵=
∴Sn==1-<1=,
而1-≥1-==log2t,

分析:(1)根據(jù)P、q是方程的兩實(shí)根,利用韋達(dá)定理可求得p+q,pq,p,p-q,q成等比數(shù)列,根據(jù)等比中項(xiàng)的定義可得(p-q)2=pq,然后配湊成韋達(dá)定理的形式,即可求得正數(shù)t的值;
(2)根據(jù),利用裂項(xiàng)相消法可求其前n項(xiàng)和Sn,再利用數(shù)列的單調(diào)性可證
點(diǎn)評(píng):此題是個(gè)中檔題.考查韋達(dá)定理的應(yīng)用和等比數(shù)列的性質(zhì),以及裂項(xiàng)相消法求數(shù)列的前n項(xiàng)和,體現(xiàn)了方程的思想.以及學(xué)生綜合運(yùn)用知識(shí)解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若P、q是方程x2-
10
x+t2=0
的兩實(shí)根,且p,p-q,q成等比數(shù)列.
(1)求正數(shù)t的值.
(2)設(shè)an=
1
n(n+1)
,Sn為數(shù)列{an}的前n項(xiàng)和.求證:log2t≤Sn
1
2
logt2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

       設(shè)p,q為實(shí)數(shù),α,β是方程的兩個(gè)實(shí)根,數(shù)列滿足

(1)證明:

(2)求數(shù)列的通項(xiàng)公式;

(3)若的前n項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年普通高等學(xué)校招生全國統(tǒng)一考試?yán)砜茢?shù)學(xué)(廣東卷) 題型:解答題

(本小題滿分12分)

  設(shè)p,q為實(shí)數(shù),α,β是方程的兩個(gè)實(shí)根,數(shù)列滿足

(1)證明:

(2)求數(shù)列的通項(xiàng)公式;

(3)若的前n項(xiàng)和

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)復(fù)習(xí)(第6章 數(shù)列):6.4 等差數(shù)列、等比數(shù)列(三)(解析版) 題型:解答題

若P、q是方程的兩實(shí)根,且p,p-q,q成等比數(shù)列.
(1)求正數(shù)t的值.
(2)設(shè),Sn為數(shù)列{an}的前n項(xiàng)和.求證:

查看答案和解析>>

同步練習(xí)冊答案