π
4
<α<β<
π
2
,sinα+cosα=a,sinβ+cosβ=b,則a,b的大小關(guān)系是
 
考點(diǎn):兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:化簡(jiǎn)可得a=
2
sin(α+
π
4
),b=
2
sin(β+
π
4
),又可得
π
2
<α+
π
4
<β+
π
4
4
,由正弦函數(shù)的單調(diào)性可得.
解答: 解:化簡(jiǎn)可得a=sinα+cosα=
2
sin(α+
π
4
),
b=sinβ+cosβ=
2
sin(β+
π
4
),
π
4
<α<β<
π
2
,∴
π
2
<α+
π
4
<β+
π
4
4
,
由正弦函數(shù)的單調(diào)性可知a>b
故答案為:a>b
點(diǎn)評(píng):本題考查兩角和與差的正弦函數(shù),涉及三角函數(shù)的單調(diào)性,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知AC=1,∠BAC=60°,S△ABC=
3

(1)求sin∠ACB的值;
(2)記BC邊上的中線為AD,求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某化肥廠甲、乙兩個(gè)車間負(fù)責(zé)包裝肥料,在自動(dòng)包裝傳送帶上每隔30秒抽取一包產(chǎn)品,稱其重量,分別記錄抽查數(shù)據(jù)如下:
甲:102,111,89,98,103,98,99;
乙:104,111,87,100,99,98,101.
(1)這種抽樣方法是那一種?
(2)將這兩組數(shù)據(jù)用莖葉圖表示;
(3)計(jì)算這兩組數(shù)據(jù)的平均數(shù)和方差,說(shuō)明那個(gè)車間的產(chǎn)品比較穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知b=3,三個(gè)內(nèi)角A,B,C成等差數(shù)列.
(1)若cosC=
6
3
,求c;
(2)求
BA
BC
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b是正實(shí)數(shù),以下不等式:(1)
a
b
+
b
a
>2;(2)
2(a2+b2)
≥a+b;(3)
ab
2ab
a+b
;(4)a<|a-b|+b,其中恒成立的有(  )
A、(1)(2)
B、(2)(3)
C、(3)(4)
D、(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

y=sin(2x-
π
3
)-sin2x的一個(gè)單調(diào)遞增區(qū)間是(  )
A、[-
π
6
π
3
]
B、[
π
12
,
7
12
π]
C、[
5
12
π,
13
12
π]
D、[
π
3
6
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知空間四點(diǎn)A(4,1,3),B(2,3,1),C(3,7,-5),D(x,-1,3)共面,則x=(  )
A、4B、1C、10D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

四棱錐S-ABCD中,底面ABCD為直角梯形,AB垂直于AD和BC,SA⊥面ABCD,SA=AB=BC=2,AD=1.求:
(1)VS-ABCD
(2)SC上是否存在點(diǎn)E,使DE⊥SB?若存在,確定點(diǎn)E的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知2x+3y+4z=1,則x2+y2+z2的最小值是  (  )
A、
1
9
B、
1
13
C、
1
21
D、
1
29

查看答案和解析>>

同步練習(xí)冊(cè)答案