已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且3an+1+2Sn=3
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)對(duì)任意正整數(shù)n,是否存在k∈R,使得Sn≥k恒成立?若存在,求是實(shí)數(shù)k的最大值;若不存在,說明理由.
考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(1)在數(shù)列遞推式中取n=n-1得另一遞推式,作差后得到數(shù)列{an}為等比數(shù)列并求得公比,然后直接代入等比數(shù)列的通項(xiàng)公式得答案;
(2)求出等比數(shù)列的前n項(xiàng)和,由單調(diào)性求出前n項(xiàng)和的最小值,則可求得使Sn≥k恒成立的k的最大值.
解答: 解:(1)由3an+1+2Sn=3  ①
得,當(dāng)n≥2時(shí),3an+2Sn-1=3  ②
由①-②得3an+1-3an+2an=0,
an+1=
1
3
an
 (n≥2).
又a1=1,3a2+2a1=3,得a2=
1
3
,
a2=
1
3
a1

故數(shù)列{an}是首項(xiàng)為1,公比q=
1
3
的等比數(shù)列,
an=a1qn-1=(
1
3
)n-1
;
(2)假設(shè)存在滿足題設(shè)條件的實(shí)數(shù)k,由(1)知,
Sn=
a1(1-qn)
1-q
=
1-(
1
3
)n
1-
1
3
=
3
2
[1-(
1
3
)n]

由題意知,對(duì)任意正整數(shù)n恒有k≤
3
2
[1-(
1
3
)n]
,
又?jǐn)?shù)列{1-(
1
3
)n
}單調(diào)遞增,
∴當(dāng)n=1時(shí),數(shù)列中的最小項(xiàng)為
2
3
,
則必有k≤1,
即實(shí)數(shù)k最大值為1.
點(diǎn)評(píng):本題考查了數(shù)列遞推式,考查了等比關(guān)系的確定,考查了等比數(shù)列的前n項(xiàng)和,訓(xùn)練了利用函數(shù)單調(diào)性求數(shù)列和的最值,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知多面體ABC-DEFG,三條棱AB,AC,AD兩兩垂直,平面ABC∥平面DEFG,平面BEF∥平面ADGC,AB=AD=DG=2,AC=EF=1.
(1)求證:EF⊥平面BEDA;
(2)求多面體ABC-DEFG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某醫(yī)院有內(nèi)科醫(yī)生12名,外科醫(yī)生8名,現(xiàn)選出5名參加賑災(zāi)醫(yī)療隊(duì),其中
(1)內(nèi)科醫(yī)生甲與外科醫(yī)生乙必須參加,共有多少種不同的選法?
(2)甲、乙二人至少有一人參加,有多少種選法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=(k+1)x2-(2k+1)x+1,x∈R.
(1)若f(x)>0恒成立,求實(shí)數(shù)k的取值范圍;
(2)當(dāng)-1<k<0時(shí),解不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:方程(ax+2)(ax+1)=0在[-1,1]上有解;命題p:不等式x2﹢2ax﹢2a≥0恒成立;若命題“p∨q”是假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知?jiǎng)狱c(diǎn)P(x,y)(y≤0)到點(diǎn)F(0,2)的距離為d1,到x軸的距離為d2,且d1-d2=2.
(Ⅰ)求點(diǎn)P的軌跡E的方程;
(Ⅱ)若直線l斜率為1且過點(diǎn)(1,0),其與軌跡E交于點(diǎn)M、N,求|MN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx+2cos2x-1
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在區(qū)間[-
π
6
,
π
4
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=2an+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Sn為數(shù)列{
2n
an+1
}的前n項(xiàng)和,求Sn
(3)證明:
1
a1
+
1
a2
+
1
a3
+…+
1
an+1
5
3
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出一個(gè)正五棱柱.
(Ⅰ)用3種顏色給其10個(gè)頂點(diǎn)染色,要求各側(cè)棱的兩個(gè)端點(diǎn)不同色,有幾種染色方案?
(Ⅱ)以其10個(gè)頂點(diǎn)為頂點(diǎn)的四面體共有幾個(gè)?

查看答案和解析>>

同步練習(xí)冊(cè)答案