已知一個(gè)公司原有職工8人,年薪1萬(wàn)元,現(xiàn)公司效益逐年改善,從今年開(kāi)始每年工資比上年增長(zhǎng)20%,且每年新招工人5名,第一年工資0.8萬(wàn)元,第二年與老職工發(fā)一樣的工資.則第n年該公司發(fā)給職工的總工資為
 
考點(diǎn):函數(shù)模型的選擇與應(yīng)用
專題:應(yīng)用題
分析:由題意寫(xiě)出n=1,2,3,…時(shí),該公司發(fā)給職工的總工資,從而寫(xiě)出第n年該公司發(fā)給職工的總工資.
解答: 解:由題意得,
n=1時(shí),該公司發(fā)給職工的總工資為:8•(1+20%)+5×0.8;
n=2時(shí),該公司發(fā)給職工的總工資為:(8+5)•(1+20%)2+5×0.8;
n=3時(shí),該公司發(fā)給職工的總工資為:(8+10)•(1+20%)3+4;

n時(shí),該公司發(fā)給職工的總工資為:(8+5(n-1))•(1+20%)n+4;
故第n年該公司發(fā)給職工的總工資為(8+5(n-1))•(1+20%)n+4=(5n+3)•1.2n+4;
故答案為:(5n+3)•1.2n+4.
點(diǎn)評(píng):本題考查了函數(shù)在實(shí)際問(wèn)題中的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直角三角形ABC中,CA=CB=
2
,M為AB的中點(diǎn),將△ABC沿CM折疊,使A、B之間的距離為1,則三棱錐M-ABC外接球的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在一次棋類比賽中,進(jìn)行單循環(huán)比賽,其中有兩個(gè)人各賽了3場(chǎng)(兩人之間未賽)后因故退出比賽,這次比賽共進(jìn)行了84場(chǎng),問(wèn)最初有多少人參加比賽?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

利用秦九韶算法計(jì)算f(x)=x5+2x4+3x3+4x2+5x+6在x=5時(shí)的值為(  )
A、4881B、220
C、975D、4818

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若兩個(gè)分類變量X和Y的2×2列聯(lián)表為:
y1y2合計(jì)
x1104050
x2203050
合計(jì)3070100
參考公式:獨(dú)立性檢測(cè)中,隨機(jī)變量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥R)0.100.050.0250.0100.0050.001
k02.7063.8415.02406.6357.87910.828
則認(rèn)為“X與Y之間有關(guān)系”的把握可以達(dá)到(  )
A、95%B、5%
C、97.5%D、2.5%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+alnx(a≠0)
(Ⅰ)a=-2時(shí),求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)判斷函數(shù)f(x)在定義域內(nèi)有無(wú)極值,若有,求之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1、F2是橢圓的兩個(gè)焦點(diǎn),過(guò)F2作橢圓長(zhǎng)軸的垂線交橢圓于點(diǎn)P,若△F1PF2為等腰直角三角形,則該橢圓的離心率為( 。
A、
2
-1
B、2-
2
C、
2
2
D、
2
-1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m,n是兩條不同直線,α,β是兩個(gè)不同的平面,且m∥α,n?β,則下列敘述正確的是(  )
A、若α∥β,則m∥n
B、若m∥n,則α∥β
C、若n⊥α,則m⊥β
D、若m⊥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cosθ=-
12
13
,θ∈(π,
2
),求tan(θ-
π
4
)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案