12.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,已知a1+a6+a11=18,則S11的值為( 。
A.54B.55C.66D.65

分析 由等差數(shù)列{an}的性質(zhì),a1+a6+a11=18,可得3a6=18,解得a6.再利用求和公式及其性質(zhì)即可得出.

解答 解:由等差數(shù)列{an}的性質(zhì),a1+a6+a11=18,
∴3a6=18,解得a6=6.
則S11=$\frac{11×({a}_{1}+{a}_{11})}{2}$=11a6=66.
故選:C.

點(diǎn)評 本題考查了等差數(shù)列的性質(zhì)及其通項(xiàng)公式求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知F1,F(xiàn)2為橢圓的兩個焦點(diǎn),以F1為圓心,且經(jīng)過橢圓中心的圓與橢圓有一個公共點(diǎn)為P,若PF2恰好與圓F1相切,則該橢圓的離心率為$\sqrt{3}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα}\\{y=sinα}\end{array}\right.$,(α為參數(shù),且α∈[0,π]),曲線C2的極坐標(biāo)方程為ρ=-2sinθ.
(Ⅰ)求C1的極坐標(biāo)方程與C2的直角坐標(biāo)方程;
(Ⅱ)若P是C1上任意一點(diǎn),過點(diǎn)P的直線l交C2于點(diǎn)M,N,求|PM|•|PN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在等比數(shù)列{an}中,已知a2a5=-32,a3+a4=4,且公比為整數(shù),則a9=-256.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列{an}滿足,對于任意的m,n∈N*,都有am+an=am+n-2mn,若a1=1,則a10=100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x),g(x)滿足關(guān)系$g(x)=f(x)•f({x+\frac{π}{2}})$,
(1)設(shè)f(x)=cosx+sinx,求g(x)的解析式;
(2)當(dāng)f(x)=|sinx|+cosx時,存在x1,x2∈R,對任意x∈R,g(x1)≤g(x)≤g(x2)恒成立,求|x1-x2|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知復(fù)數(shù)$\frac{2+ai}{2-i}$為純虛數(shù)(i是虛數(shù)單位),則實(shí)數(shù)a=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.a(chǎn),b是正實(shí)數(shù),且a+b=4,則有(  )
A.$\frac{1}{ab}$≥$\frac{1}{2}$B.$\frac{1}{a}$+$\frac{1}$≥1C.$\sqrt{ab}$≥2D.$\frac{1}{{a}^{2}+^{2}}$≥$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)y=sinx的圖象與函數(shù)y=x圖象的交點(diǎn)的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案