分析 畫出約束條件的可行域,利用目標函數(shù)的幾何意義求解即可.
解答 解:x,y滿足約束條件$\left\{\begin{array}{l}{x≤2}\\{x+y-2≥0}\\{x-y+2≥0}\end{array}\right.$的可行域如圖:
則$\sqrt{{x}^{2}+{y}^{2}}$的幾何意義是可行域的點到坐標原點距離,由圖形可知OP的距離最小,直線x+y-2=0的斜率為1,所以|OP|=$\sqrt{2}$.
故答案為:$\sqrt{2}$.
點評 本題考查線性規(guī)劃的簡單應(yīng)用,畫出可行域以及判斷目標函數(shù)的幾何意義是解題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | sinα<0 | B. | tanα>0 | C. | sinα+cosα>0 | D. | sinα-cosα>0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
本/年 | [0,10) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60] |
頻數(shù) | 3 | 1 | 8 | 4 | 2 | 2 |
性別 閱讀量 | 豐富 | 不豐富 | 合計 |
男 | |||
女 | |||
合計 |
P(K2≥k0) | 0.025 | 0.010 | 0.005 |
k0 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 有最大值3,最小值-1 | B. | 有最大值2,最小值-2 | ||
C. | 有最大值3,最小值0 | D. | 有最大值2,最小值0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {1,2} | B. | {-2,-1,0,1,2} | C. | {1} | D. | {0,1,2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 45° | B. | 30° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | 3 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=±x | B. | y=±2x | C. | y=±3x | D. | y=±4x |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com