設向量
a
=(a1,a2),
b
=(b1,b2)
,定義一種向量積:
a
?
b
=(a1,a2)?(b1,b2)=(a1b1a2b2)
.已知
m
=(
1
2
,3),
n
=(
π
6
,0)
,點P在y=sinx的圖象上運動,點Q在y=f(x)的圖象上運動,且滿足
OQ
=
m
?
OP
+
n
(其中O為坐標原點),則y=f(x)的最大值及最小正周期分別是( 。
A、
1
2
,π
B、
1
2
,4π
C、3,π
D、3,4π
分析:先要理解題目條件中給出的一種新定義,看準規(guī)定的運算,根據(jù)所給的運算整理要求解的結論,得到y(tǒng)=f(x)的表示式,后面的問題變?yōu)橥ㄟ^恒等變形進行三角函數(shù)性質的應用.
解答:解:設p點的坐標是(x,sinx)
OQ
=
m
OP
+
n

=(
1
2
x,3sinx)+(
π
6
,0)
=(
1
2
x+
π
6
,3sinx),
∵點Q在y=f(x)的圖象上運動,
∴y=3sin(
1
2
x+
π
6

∴T=4π,
最大值為3
故選D
點評:要讓學生體會思路的形成過程,體會數(shù)學思想方法的應用.引導學生發(fā)現(xiàn)解題方法,展示思路的形成過程,總結解題規(guī)律.指導學生搞好解題后的反思,從而提高學生綜合應用知識分析和解決問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•潮州二模)設向量
a
=(a1,a2),
b
=(b1,b2)
,定義一運算:
a
?
b
=(a1,a2)
?(b1,b2)=(a1b1,a2b2).已知
m
=(
1
2
,2),
.
n
=(x1,sinx1)
,點Q在y=f(x)的圖象上運動,且滿足
.
OQ
m
?
n
(其中O為坐標原點),則y=f(x)的最大值及最小正周期分別是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湖南模擬)設向量
a
=(a1,a2)
,
b
=(b1,b2)
,定義一種向量積
a
?
b
=(a1b1,a2b2)
,已知
m
=(2,
1
2
)
n
=(
π
3
,0)
,點P(x,y)在y=sinx的圖象上運動.Q是函數(shù)y=f(x)圖象上的點,且滿足
OQ
=
m
?
OP
+
n
(其中O為坐標原點),函數(shù)y=f(x)的值域是
[-
1
2
,
1
2
]
[-
1
2
,
1
2
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設向量
a
,
b
c
滿足
a
+
b
+
c
=
0
,
a
b
,且
a
,
b
的模分別為s,t,其中s=a1=1,t=a3,an+1=nan,則
c
的模為
5
5

查看答案和解析>>

科目:高中數(shù)學 來源:潮州二模 題型:單選題

設向量
a
=(a1,a2),
b
=(b1b2)
,定義一運算:
a
?
b
=(a1,a2)
?(b1,b2)=(a1b1,a2b2).已知
m
=(
1
2
,2),
.
n
=(x1,sinx1)
,點Q在y=f(x)的圖象上運動,且滿足
.
OQ
m
?
n
(其中O為坐標原點),則y=f(x)的最大值及最小正周期分別是( 。
A.
1
2
,π
B.
1
2
,4π
C.2,πD.2,4π

查看答案和解析>>

同步練習冊答案