【題目】在平面直角坐標系中,直線過點,傾斜角為.以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程.
(1)寫出直線的參數(shù)方程及曲線的直角坐標方程;
(2)若與相交于,兩點,為線段的中點,且,求.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為4的菱形,∠BAD=60°,對角線AC與BD相交于點O,四邊形ACFE為梯形,EF//AC,點E在平面ABCD上的射影為OA的中點,AE與平面ABCD所成角為45°.
(Ⅰ)求證:BD⊥平面ACF;
(Ⅱ)求平面DEF與平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),.
(1)若曲線在點處的切線與直線垂直,求的單調(diào)性和極小值(其中為自然對數(shù)的底數(shù));
(2)若對任意的,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在中,,,有下述四個結(jié)論:
①若為的重心,則
②若為邊上的一個動點,則為定值2
③若,為邊上的兩個動點,且,則的最小值為
④已知為內(nèi)一點,若,且,則的最大值為2
其中所有正確結(jié)論的編號是( )
A.①③B.①④C.②③D.②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在邊長等于2正方形中,點Q是中點,點M,N分別在線段上移動(M不與A,B重合,N不與C,D重合),且,沿著將四邊形折起,使得二面角為直二面角,則三棱錐體積的最大值為________;當三棱錐體積最大時,其外接球的表面積為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖一所示,四邊形是邊長為的正方形,沿將點翻折到點位置(如圖二所示),使得二面角成直二面角.,分別為,的中點.
(1)求證:;
(2)求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐中,面面,底面為矩形,且,,,O為的中點,點E在上,且.
(1)證明:;
(2)在上是否存在一點F,使面,若存在,試確定點F的位置.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】5人并排站成一行,如果甲乙兩人不相鄰,那么不同的排法種數(shù)是__________.(用數(shù)字作答);5人并排站成一行,甲乙兩人之間恰好有一人的概率是__________(用數(shù)字作答)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com