【題目】給出定義:若(其中為整數(shù)),則叫做離實(shí)數(shù)最近的整數(shù),記作,即.設(shè)函數(shù),二次函數(shù),若函數(shù)的圖象有且只有一個(gè)公共點(diǎn),則的取值不可能是(

A.B.C.D.

【答案】C

【解析】

先分析函數(shù)的性質(zhì),可以畫出圖象,然后結(jié)合二次函數(shù)性質(zhì)可知什么時(shí)候只有一個(gè)公共點(diǎn).

∵當(dāng)(其中為整數(shù)),,函數(shù),

是周期函數(shù),周期為1,當(dāng)時(shí),.作出函數(shù)圖象,如圖,

A時(shí),,它的零點(diǎn)是0,由只有一組解,即直線相切,又,但不在函數(shù)的圖象上,因此只有一個(gè)公共點(diǎn);

B時(shí),,它的零點(diǎn)是0,,由(1)知它在處切線方程為,因此的圖象與的圖象只有一個(gè)公共點(diǎn);

C時(shí),,它的零點(diǎn)為0,但,而,因此的圖象有兩個(gè)公共點(diǎn);

D時(shí),,它的零點(diǎn)為0,且處的切線方程是.因此的圖象只有一個(gè)公共點(diǎn).

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某幾何體的三視圖如圖2所示(小正方形的邊長為),則該幾何體的外接球的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,由直三棱柱和四棱錐構(gòu)成的幾何體中,,平面平面

(I)求證:;

(II)若M為中點(diǎn),求證:平面;

(III)在線段BC上(含端點(diǎn))是否存在點(diǎn)P,使直線DP與平面所成的角為?若存在,求得值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某小學(xué)隨機(jī)抽取100名同學(xué),將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖),

1)由圖中數(shù)據(jù)求a的值;

2)若要從身高在[120,130),[130,140),[140,150]三組內(nèi)的學(xué)生中,用分層抽樣的方法選取18人參加一項(xiàng)活動,則從身高在[140,150]內(nèi)的學(xué)生中選取的人數(shù)應(yīng)為多少?

3)估計(jì)這所小學(xué)的小學(xué)生身高的眾數(shù),中位數(shù)(保留兩位小數(shù))及平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x2+2xtanθ-1,x∈[-1,],其中θ∈(-,).

(1)當(dāng)θ=-時(shí),求函數(shù)f(x)的最大值;

(2)求θ的取值范圍,使yf(x)在區(qū)間[-1,]上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A. 若命題均為真命題,則命題為真命題

B. “若,則”的否命題是“若

C. ,“”是“”的充要條件

D. 命題”的否定為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若,不等式有且只有兩個(gè)整數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中超足球隊(duì)的后衛(wèi)線上一共有7名球員,其中3人只能打中后衛(wèi),2人只能打邊后衛(wèi),2人既能打中后衛(wèi)又能打邊后衛(wèi),主教練決定選派4名后衛(wèi)上場比賽,假設(shè)可以隨機(jī)選派球員.

(1)在選派的4人中至少有2人能打邊后衛(wèi)的概率;

(2)在選派的4人中既能打中后衛(wèi)又能打邊后衛(wèi)的人數(shù)的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,異面直線互相垂直,,,,,,截面分別與,,相交于點(diǎn),,,且平面,平面.

(1)求證:平面

(2)求銳二面角的正切值.

查看答案和解析>>

同步練習(xí)冊答案