9.已知全集U={1,2,3,4,5},M={3,4,5},N={2,3},則集合(∁UN)∩M=(  )
A.{2}B.{1,3}C.{2,5}D.{4,5}

分析 求出N的補集,然后求解交集即可.

解答 解:全集U={1,2,3,4,5},N={2,3},則集合∁UN={1,4,5},M={3,4,5},
集合(∁UN)∩M={4,5}.
故選:D.

點評 本題考查集合的基本運算,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.平行四邊形ABCD中,∠DAB=60°,AB=4,AD=2.若P為CD邊上一點,則$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值為-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.計算:$\sqrt{(lo{g}_{2}5)^{2}-6lo{g}_{2}5+9}$+log23-log2${\;}^{\frac{12}{5}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知函數(shù)f(x)=ln(x+$\sqrt{1+{x}^{2}}$)+$\frac{3{e}^{x}+1}{{e}^{x}+1}$在區(qū)間[-k,k](k>0)上的最大值為M,最小值為m,則M+m=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若0<x<$\sqrt{3}$.則y=x$\sqrt{3-{x}^{2}}$的最大值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在數(shù)列{an}中,已知a1=$\frac{1}{3}$,an+1=$\frac{1}{3}$an-$\frac{2}{{3}^{n+1}}$,n∈N*,設Sn為{an}的前n項和.
(1)求證:數(shù)列{3nan}是等差數(shù)列;
(2)求Sn;
(3)是否存在正整數(shù)p,q,r(p<q<r),使Sp,Sq,Sr成等差數(shù)列?若存在,求出p,q,r的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.(1)求函數(shù)y=2sin(2x+$\frac{π}{3}$)(-$\frac{π}{6}$<x<$\frac{π}{6}$)的值域;
(2)求函數(shù)y=2cos2x+5sin x-4的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.計算下列各式
(1)$\root{3}{{(1+\sqrt{2}{)^3}}}+\root{4}{{(1-\sqrt{2}{)^4}}}$;
(2)${(-\frac{7}{6})^0}+{8^{0.25}}×\root{4}{2}+{(\root{3}{2}×\sqrt{3})^6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{f_1}(x),x∈[{0,\frac{1}{2}})\\{f_2}(x),x∈[{\frac{1}{2},1}]\end{array}$,其中f1(x)=-2(x-$\frac{1}{2}$)2+1,f2(x)=-2x+2.
(1)在如圖直角坐標系中畫出y=f(x)的圖象;
(2)寫出y=f(x)的單調增區(qū)間;
(3)若x0∈[0,$\frac{1}{2}}$),x1=f(x0),f(x1)=x0.求x0的值.

查看答案和解析>>

同步練習冊答案