【題目】已知△ABC的三個頂點A(﹣1,0),B(1,0),C(3,2),其外接圓為⊙H.若直線l過點C,且被⊙H截得的弦長為2,求直線l的方程.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=cos2x﹣sinxcosx
(1)求f(x)的最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)求f(x)在區(qū)間 上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在多面體中,△是等邊三角形,△是等腰直角三角形, ,平面 平面, 平面,點為的中點,連接.
(1) 求證: ∥平面;
(2)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2016年奧運會于8月5日在巴西里約熱內(nèi)盧舉行,為了解某單位員工對奧運會的關注情況,對本單位部分員工進行了調(diào)查,得到平均每天看奧運會直播時間的莖葉圖如下(單位:分鐘),若平均每天看奧運會直播不低于70分鐘的員工可以視為“關注奧運”,否則視為“不關注奧運”.
(1)試完成下面表格,并根據(jù)此數(shù)據(jù)判斷是否有99.5%以上的把握認為是否“關注奧運會”與性別有關?
(2)若從參與調(diào)查且平均每天觀看奧運會時間不低于110分鐘的員工中抽取4人,用表示抽取的女員工數(shù),求的分布列和期望值.
參考公式: ,其中
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|,g(x)=ax,(a∈R).
(1)若函數(shù)y=f(x)是偶函數(shù),求出符合條件的實數(shù)a的值;
(2)若方程f(x)=g(x)有兩解,求出實數(shù)a的取值范圍;
(3)若a>0,記F(x)=g(x)f(x),試求函數(shù)y=F(x)在區(qū)間[1,2]上的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠DAB=60°,F(xiàn)C⊥平面ABCD,AE⊥BD,CB=CD=CF.
(Ⅰ)求證:BD⊥平面AED;
(Ⅱ)求二面角F﹣BD﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{an}前n項和為Sn , 且Sn+an=2. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足b1=a1 , bn= ,n≥2 求證{ }為等比數(shù)列,并求數(shù)列{bn}的通項公式;
(Ⅲ)設cn= ,求數(shù)列{cn}的前n和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直四棱柱ABCD-ABCD中,底面ABCD為等腰梯形,AB//CD,AB=4, BC=CD=2, AA=2, E、E、F分別是棱AD、AA、AB的中點。
證明:(1)直線EE//平面FCC;
(2)求二面角B-FC-C的余弦值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】是否存在實數(shù)a,使函數(shù) 為奇函數(shù),同時使函數(shù) 為偶函數(shù),證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com