【題目】用數(shù)學(xué)歸納法證明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12 時(shí),由n=k的假設(shè)到證明n=k+1時(shí),等式左邊應(yīng)添加的式子是(
A.(k+1)2+2k2
B.(k+1)2+k2
C.(k+1)2
D.

【答案】B
【解析】解:根據(jù)等式左邊的特點(diǎn),各數(shù)是先遞增再遞減, 由于n=k,左邊=12+22+…+(k﹣1)2+k2+(k﹣1)2+…+22+12
n=k+1時(shí),左邊=12+22+…+(k﹣1)2+k2+(k+1)2+k2+(k﹣1)2+…+22+12
比較兩式,從而等式左邊應(yīng)添加的式子是(k+1)2+k2
故選B.
根據(jù)等式左邊的特點(diǎn),各數(shù)是先遞增再遞減,分別寫(xiě)出n=k與n=k+1時(shí)的結(jié)論,即可得到答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】不等式組 的解集是( )
A.{x|﹣1<x<1}
B.{x|1<x≤3}
C.{x|﹣1<x≤0}
D.{x|x≥3或x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體ABCDA1B1C1D1中,EF分別為棱AB , CC1的中點(diǎn),則在平面ADD1A1內(nèi)且與平面D1EF平行的直線(xiàn)( )

A.不存在
B.有1條
C.有2條
D.有無(wú)數(shù)條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)籃球運(yùn)動(dòng)員互不影響地在同一位置投球,命中率分別為m與p,且乙投球3次均未命中的概率為 ,甲投球未命中的概率恰是乙投球未命中的概率的2倍.
(Ⅰ)求乙投球的命中率p;
(Ⅱ)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,長(zhǎng)方體的長(zhǎng)、寬、高分別為5 cm,4 cm,3 cm.一只螞蟻從A點(diǎn)到C1點(diǎn)沿著表面爬行的最短路程是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體ABCDA1B1C1D1的棱長(zhǎng)為aMBD1的中點(diǎn),NA1C1上,且滿(mǎn)足|A1N|=3|NC1|.

(1)求MN的長(zhǎng);
(2)試判斷△MNC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知| |=4,| |=3,(2 ﹣3 )(2 + )=61.
的夾角;
②求| + |和| |.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的周長(zhǎng)為 +1,且sinA+sinB= sinC
(I)求邊AB的長(zhǎng);
(Ⅱ)若△ABC的面積為 sinC,求角C的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)命題p:實(shí)數(shù)滿(mǎn)足x2﹣4ax+3a2<0,a≠0;命題q:實(shí)數(shù)滿(mǎn)足 ≥0.
(1)若a=1,p∧q為真命題,求x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案