13.已知復(fù)數(shù)z滿足(1+i)z=2-i,則z=( 。
A.-$\frac{1}{2}$-$\frac{3}{2}$iB.$\frac{3}{2}$-$\frac{1}{2}$iC.$\frac{1}{2}+\frac{3}{2}$iD.$\frac{1}{2}$-$\frac{3}{2}$i

分析 由(1+i)z=2-i,得$z=\frac{2-i}{1+i}$,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.

解答 解:由(1+i)z=2-i,
得$z=\frac{2-i}{1+i}$=$\frac{(2-i)(1-i)}{(1+i)(1-i)}=\frac{1-3i}{2}=\frac{1}{2}-\frac{3}{2}i$.
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知$a={({\frac{2}{5}})^{-\frac{1}{5}}}$,$b={({\frac{6}{5}})^{-\frac{1}{5}}}$,$c={({\frac{6}{5}})^{-\frac{2}{5}}}$,則a,b,c的大小關(guān)系是( 。
A.a<b<cB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.如果實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{x-y≥0}\\{2x+y-2≥0}\\{x-2≤0}\end{array}\right.$,z=$\frac{y+1}{x}$的最小值為$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)點(diǎn)集M={(x,y)|xcosθ+ysinθ-sinθ-1=0(0≤θ≤2π)},集合M在坐標(biāo)平面xoy內(nèi)形成區(qū)域的邊界構(gòu)成曲線C,則C的方程為x2+(y-1)2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>1)過(guò)點(diǎn)($\sqrt{3}$,$\frac{\sqrt{3}}{2}$),以橢圓的頂點(diǎn)為頂點(diǎn)的四邊形面積為4$\sqrt{3}$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)F1、F2分別為橢圓C的左右焦點(diǎn),過(guò)F2的直線l與橢圓C交于不同兩點(diǎn)M、N,記△F1MN的內(nèi)切圓的面積為S,求當(dāng)S取最大值時(shí)直線l的方程,并求出S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知向量$\overrightarrow m$=(sin x,$\sqrt{3}$sinx),$\overrightarrow n$=(sinx,-cosx),設(shè)函數(shù)$f(x)=\overrightarrow m•\overrightarrow n$,若函數(shù)g(x)=-f(-x).
(Ⅰ)求函數(shù)g(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{6}$]上的最大值,并求出此時(shí)x的取值;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,若f($\frac{A}{2}$-$\frac{π}{12}$)+g($\frac{π}{12}$+$\frac{A}{2}$)=-$\sqrt{3}$,b+c=7,bc=8,求邊a的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.四個(gè)人各寫一張賀卡,放在一起,再各取一張不是自己寫的賀卡,共有9種不同的方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知z0=2+2i,|z-z0|=$\sqrt{2}$,
(1)求復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的軌跡方程,并說(shuō)明它是什么曲線.
(2)求z為何值時(shí),|z|有最大、最小值,并求出|z|有最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.對(duì)于函數(shù)y=f(x),定義域?yàn)镈=[-2,2],以下命題正確的是(只要求寫出命題的序號(hào))①③④
①若函數(shù)y=f(x)在D上具有單調(diào)性,且f(0)>f(1),則y=f(x)是D上的遞減函數(shù);
②若f(-1)<f(0)<f(1)<f(2),則y=f(x)是D上的遞增函數(shù);
③若f(x)是D上的遞減函數(shù),對(duì)任意x∈D,使得f(x)-m≥0恒成立,則必須m≤f(2);
④若f(x)是D上的遞增函數(shù),存在x0∈D,使得f(x0)-m≥0成立,則必須m≤f(2).

查看答案和解析>>

同步練習(xí)冊(cè)答案