2.已知函數(shù)f(x)=x|x-2|
(Ⅰ)寫(xiě)出不等式f(x)>0的解集;
(Ⅱ)解不等式f(x)<x.

分析 (Ⅰ)根據(jù)|x-2|≥0,求出不等式的解集即可;(Ⅱ)通過(guò)討論x的范圍,得到關(guān)于x的不等式組,解出即可.

解答 解:(Ⅰ)∵|x-2|≥0,
故f(x)>0的解集是:{x|x>0且x≠2};
(Ⅱ)由x|x-2|<x,
得:$\left\{\begin{array}{l}{x>0}\\{|x-2|<1}\end{array}\right.$,或$\left\{\begin{array}{l}{x<0}\\{|x-2|>1}\end{array}\right.$,
解得:1<x<3,或x<0,
故不等式的解集是{x|1<x<3或x<0}.

點(diǎn)評(píng) 本題考查了解絕對(duì)值不等式問(wèn)題,考查分類(lèi)討論思想,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=|x-1|+|x-t|(t∈R)
(1)t=2時(shí),求不等式f(x)>2的解集;
(2)若對(duì)于任意的t∈[1,2],x∈[-1,3],f(x)≥a+x恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.一個(gè)幾何體的三視圖如圖所示,那么這個(gè)幾何體的表面積是$16+2\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知拋物線(xiàn)C:y2=2px(p>0)的焦點(diǎn)為F,且經(jīng)過(guò)點(diǎn)A(1,2),過(guò)點(diǎn)F的直線(xiàn)與拋物線(xiàn)C交于P,Q兩點(diǎn).
(Ⅰ)求拋物線(xiàn)C的方程;
(Ⅱ)O為坐標(biāo)原點(diǎn),直線(xiàn)OP,OQ與直線(xiàn)x=-$\frac{p}{2}$分別交于S,T兩點(diǎn),試判斷$\overrightarrow{FS}$•$\overrightarrow{FT}$是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若雙曲線(xiàn)$\frac{x^2}{m^2}-{y^2}=1(m>0)$的一條漸近線(xiàn)方程為$x+\sqrt{3}y=0$,則m=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.要得到函數(shù)y=cos(2x-$\frac{π}{6}$)的圖象,只需將函數(shù)y=sin2x的圖象( 。
A.向左平移$\frac{π}{12}$個(gè)單位B.向左平移$\frac{π}{6}$個(gè)單位
C.向右平移$\frac{π}{12}$個(gè)單位D.向右平移$\frac{π}{6}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.惠城某影院共有100個(gè)座位,票價(jià)不分等次.根據(jù)該影院的經(jīng)營(yíng)經(jīng)驗(yàn),當(dāng)每張標(biāo)價(jià)不超過(guò)10元時(shí),票可全部售出;當(dāng)每張票價(jià)高于10元時(shí),每提高1元,將有3張票不能售出.為了獲得更好的收益,需給影院定一個(gè)合適的票價(jià),符合的基本條件是:
①為方便找零和算帳,票價(jià)定為1元的整數(shù)倍;
②影院放映一場(chǎng)電影的成本費(fèi)用支出為575元,票房收入必須高于成本支出.
用x(元)表示每張票價(jià),用y(元)表示該影院放映一場(chǎng)的凈收入(除去成本費(fèi)用支出后的收入).
(Ⅰ)把y表示成x的函數(shù),并求其定義域;
(Ⅱ)試問(wèn)在符合基本條件的前提下,每張票價(jià)定為多少元時(shí),放映一場(chǎng)的凈收入最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖是甲、乙兩位同學(xué)高二上學(xué)期歷史成績(jī)的莖葉圖,有一個(gè)數(shù)字被污損,用a(3≤a≤8且a∈N)表示.
(1)若乙同學(xué)算出自己歷史平均成績(jī)是92分,求a的值及乙同學(xué)歷史成績(jī)的方差;
(2)求甲同學(xué)歷史平均成績(jī)不低于乙同學(xué)歷史平均成績(jī)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知數(shù)列{an}為等比數(shù)列,前n項(xiàng)的和為Sn,且a5=4S4+3,a6=4S5+3,則此數(shù)列公比q=5.

查看答案和解析>>

同步練習(xí)冊(cè)答案