下列函數(shù)中是奇函數(shù)且在(-∞,0)上為增函數(shù)的是(  )
A、f(x)=x2+2
B、f(x)=-x2+2
C、f(x)=
1
x
D、f(x)=-
1
x
考點:函數(shù)奇偶性的判斷,函數(shù)單調(diào)性的判斷與證明
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:逐一考查各個選項中函數(shù)的奇偶性、以及在區(qū)間(-∞,0)上的單調(diào)性,從而得出結(jié)論.
解答: 解:對于A.f(x)=x2+2為偶函數(shù),故A錯;
對于B.f(x)=-x2+2為偶函數(shù),故B錯;
對于C.f(x)=
1
x
,有f(-x)=-f(x)為奇函數(shù),在(-∞,0)上遞減,故C錯;
對于D.f(x)=-
1
x
,有f(-x)=-f(x)為奇函數(shù),在(-∞,0)上遞增,故D對.
故選D.
點評:本題主要考查函數(shù)的單調(diào)性和奇偶性的綜合應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x+
1
x
的圖象關(guān)于( 。⿲ΨQ.
A、y軸B、直線y=x
C、坐標(biāo)原點D、直線y=-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2-4 ,  0≤x≤2
 2x ,  x<0
,則f(f(1))=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2x+3,則f(x-1)等于(  )
A、2x-2B、2x-1
C、2x+1D、2x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A=30°,C=105°,a=10,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù) 
1+3i
2-i
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)滿足f(f(x)-x2+x)=f(x)-x2+x.
(1)若f(2)=3,求f(1);又若f(0)=a,求f(a);
(2)設(shè)有且僅有一個實數(shù)x0,使得f(x0)=x0,求函數(shù)f(x)的解析表達式;
(3)在(2)的條件下,求f(x)在區(qū)間[0,m]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三條直線4x+y=4,mx+y=0,2x-3my=4,是否存在這樣的實數(shù)m,使這三條直線不能圍成任何一封閉圖形,若存在,求出m的值,并指出三條直線位置關(guān)系,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2+2(a-1)x+3在區(qū)間(-∞,4]上是減函數(shù),那么實數(shù)a的取值范圍是(  )
A、a≥3B、a≤5
C、a≤-3D、a≥-3

查看答案和解析>>

同步練習(xí)冊答案