已知函數(shù)f(x)=loga(-x2+4x-3)(a>0,且a≠1)的定義域?yàn)镸.
(Ⅰ)求定義域M,并寫出f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)x∈M時(shí),求函數(shù)g(x)=2x+3-4x的值域.
分析:(I)由函數(shù)f(x)=loga(-x2+4x-3)(a>0,且a≠1),知-x2+4x-3>0,由此能求出函數(shù)的定義域和f(x)的單調(diào)遞增區(qū)間.
(II)由g(x)=2x+3-4x=8×2x-(2x2,令t=2x,則2<t<8,由此能求出函數(shù)g(x)=2x+3-4x的值域.
解答:解:( I)∵函數(shù)f(x)=loga(-x2+4x-3)(a>0,且a≠1),
∴-x2+4x-3>0,解得1<x<3,
∴定義域M={x|1<x<3}.(4分)
①當(dāng)0<a<1時(shí),f(x)的單調(diào)遞增區(qū)間為:(2,3),(6分)
②當(dāng)a>1時(shí),f(x)的單調(diào)遞增區(qū)間為:(1,2).(8分);
( II)∵g(x)=2x+3-4x=8×2x-(2x2,
令t=2x,則2<t<8,
∴g(x)=-t2+8t,
由二次函數(shù)性質(zhì)可知:
當(dāng)2<t<8時(shí),g(x)的值域是(0,16].(13分)
點(diǎn)評(píng):本題考查對(duì)數(shù)函數(shù)的定義域和增區(qū)間的求法,考查指數(shù)函數(shù)的值域的求法.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意換元法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函數(shù)f(x)在P(0,f(0))的切線方程為y=5x+1,求實(shí)數(shù)a,b的值:
(2)當(dāng)a<3時(shí),令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx
的圖象在點(diǎn)P(2,f(2))處的切線方程為l:y=x+b
(1)求出函數(shù)y=f(x)的表達(dá)式和切線l的方程;
(2)當(dāng)x∈[
1
e
,e]
時(shí)(其中e=2.71828…),不等式f(x)<k恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
12
x2+a
(a為常數(shù)),直線l與函數(shù)f(x)、g(x)的圖象都相切,且l與函數(shù)f(x)的圖象的切點(diǎn)的橫坐標(biāo)為1.
(1)求直線l的方程及a的值;
(2)當(dāng)k>0時(shí),試討論方程f(1+x2)-g(x)=k的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
13
x3+x2+ax

(1)討論f(x)的單調(diào)性;
(2)設(shè)f(x)有兩個(gè)極值點(diǎn)x1,x2,若過兩點(diǎn)(x1,f(x1)),(x2,f(x2))的直線l與x軸的交點(diǎn)在曲線y=f(x)上,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-
32
ax2+b
,a,b為實(shí)數(shù),x∈R,a∈R.
(1)當(dāng)1<a<2時(shí),若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
(2)在(1)的條件下,求經(jīng)過點(diǎn)P(2,1)且與曲線f(x)相切的直線l的方程;
(3)試討論函數(shù)F(x)=(f′(x)-2x2+4ax+a+1)•ex的極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案