A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{3π}{8}$ |
分析 由函數(shù)f(x)=Asin(ωx+φ)的圖象可得A=1,$\frac{T}{2}$=$\frac{π}{2}$,T=π,ω=2,由特殊點的坐標(biāo)求出φ的值.
解答 解:由函數(shù)f(x)=Asin(ωx+φ)的圖象可得A=1,$\frac{T}{2}$=$\frac{π}{2}$,T=π,ω=2
再根據(jù)圖象過點($\frac{π}{12}$,1),
可得sin($\frac{π}{6}$+φ)=1,結(jié)合|φ|<$\frac{π}{2}$,可得φ=$\frac{π}{3}$.
故選C.
點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標(biāo)求出A,由特殊點的坐標(biāo)求出φ的值,再根據(jù)五點法作圖求出ω的值,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若p:?x∈R,ex>xe,q:?x0∈R,|x0|≤0,則(¬p)∧q為假 | |
B. | x=1是x2-x=0的必要不充分條件 | |
C. | 直線ax+y+2=0與ax-y+4=0垂直的充要條件為a=±1 | |
D. | “若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ①④ | C. | ②③ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a⊥b,a⊥α,b?α,則b∥α | B. | 若a⊥b,a⊥α,b⊥β,則α⊥β | ||
C. | 若a⊥β,α⊥β,則a∥α或a?α | D. | 若a∥α,α⊥β,則a⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=$\frac{1}{x}$ | B. | f(x)=x4 | C. | f(x)=2x | D. | f(x)=x-$\frac{1}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com