10.已知直線l1:3x+4y+1=0和點(diǎn)A(1,2),設(shè)過A點(diǎn)與l1垂直的直線為l2
(1)求直線l2的方程;
(2)求直線l2與兩坐標(biāo)軸圍成的三角形的面積.

分析 (1)由題意,設(shè)直線l2的方程為4x-3y+c=0,代入點(diǎn)A(1,2),可得c,即可求出直線方程.
(2)根據(jù)直線方程求出在x軸和y軸的截距,然后根據(jù)面積公式即可求出結(jié)果.

解答 解:(1)由題意,設(shè)直線l2的方程為4x-3y+c=0,
代入點(diǎn)A(1,2),可得4-6+c=0,∴c=2
∴l(xiāng)2的方程為4x-3y+2=0;
(2)由l2的方程4x-3y+2=0
解得,當(dāng)x=0時(shí),y=$\frac{2}{3}$
當(dāng)y=0時(shí),x=-$\frac{1}{2}$,
所以該直線與兩坐標(biāo)軸圍成的面積$\frac{1}{2}×|-\frac{1}{2}|×\frac{2}{3}$=$\frac{1}{6}$.

點(diǎn)評 此題考查了兩直線垂直的條件,考查三角形面積的計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,在△ABC中,AB=BC=2,∠ABC=30°,AD是邊BC上的高,則$\overrightarrow{AD}$•$\overrightarrow{AC}$的值等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.化簡$\frac{sin15°cos9°-cos66°}{sin15°sin9°+sin66°}$的結(jié)果是( 。
A.tan9°B.-tan9°C.tan15°D.-tan15°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在區(qū)間(10,20)內(nèi)的所有實(shí)數(shù)中,隨機(jī)取一個(gè)實(shí)數(shù)a,則這個(gè)實(shí)數(shù)a<13的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{7}$C.$\frac{3}{10}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=xlnx-x+1,
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)的最值;
(3)若xf′(x)≤x2+ax,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=loga(x-1)+2(a>0且a≠1)恒過定點(diǎn)(2,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=3x-x3,x∈[-1,$\sqrt{3}$]的值域是[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.集合A={x∈Z||x|≤1}的子集個(gè)數(shù)為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=asin(πx+α)+bcos(πx+β),且f(3)=3,則f(2 016)=-3.

查看答案和解析>>

同步練習(xí)冊答案