已知函數(shù)f(x)=(ax2-2xa)·ex.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=-a-2,h(x)=x2-2x-ln x,若x>1時(shí)總有g(x)<h(x),求實(shí)數(shù)a的取值范圍.
(1)單調(diào)遞增區(qū)間為(1,3),單調(diào)遞減區(qū)間為(-∞,1),(3,+∞).(2)-a
(1)當(dāng)a=1時(shí),函數(shù)f(x)=,其定義域?yàn)镽.
f′(x)=
f′(x)>0,得1<x<3,由f′(x)<0,得x<1或x>3,
∴函數(shù)f (x)的單調(diào)遞增區(qū)間為(1,3),單調(diào)遞減區(qū)間為(-∞,1),(3,+∞).
(2)∵f′(x)=
g(x)=-a-2=ax2-2(a+1)x,
φ(x)=g(x)-h(x)=x2-2ax+ln x(x>1),
當(dāng)x>1時(shí)總有g(x)<h(x)等價(jià)于φ(x)<0在(1,+∞)上恒成立.
φ′(x)=(2a-1)x-2a.
①若a,令φ′(x)=0得x1=1,x2.
當(dāng)x2x1=1,即a<1時(shí),在(1,x2)上φ′(x)<0,則φ(x)單調(diào)遞減;
在(x2,+∞)上φ′(x)>0,則φ(x)單調(diào)遞增.
φ(x)的值域?yàn)閇φ(x2),+∞),不合題意,舍去.
當(dāng)x2x1=1,即a≥1時(shí),同理可得φ(x)在(1,+∞)上單調(diào)遞增,
φ(x)的值域?yàn)?φ(1),+∞),不合題意,舍去.
②若a,即2a-1≤0時(shí),在區(qū)間(1,+∞)上恒有φ′(x)<0,則φ(x)單調(diào)遞減,φ(x)<φ(1)=-a≤0,
∴-a
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),。
(1)求函數(shù)的解析式;
(2)若對(duì)于任意,都有成立,求實(shí)數(shù)的取值范圍;
(3)設(shè),且,求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),,).
(1)判斷曲線在點(diǎn)(1,)處的切線與曲線的公共點(diǎn)個(gè)數(shù);
(2)當(dāng)時(shí),若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)(e為自然對(duì)數(shù)的底數(shù))
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù),存在實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)f(x)=2x3ax2bx+1的導(dǎo)數(shù)為f′(x),若函數(shù)yf′(x)
的圖象關(guān)于直線x=-對(duì)稱,且f′(1)=0.
①求實(shí)數(shù)ab的值;②求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知的導(dǎo)函數(shù),則的圖像是(    )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ln x-1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)m∈R,對(duì)任意的a∈(-1,1),總存在x0∈[1,e],使得不等式maf(x0)<0成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3+x-16.
(1)求曲線y=f(x)在點(diǎn)(2,-6)處的切線方程.
(2)如果曲線y=f(x)的某一切線與直線y=-x+3垂直,求切點(diǎn)坐標(biāo)與切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3+ax2+bx(a,b∈R).
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(1)=,且函數(shù)f(x)在上不存在極值點(diǎn),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案