7.已知全集U={1,2,3,4,5},且A={2,3,4},B={1,2},那么A∩(∁UB)等于( 。
A.{2}B.{5}C.{3,4}D.{22,3,4,5}

分析 先求出CUB,由此利用交集定義能求出A∩(∁UB).

解答 解:∵全集U={1,2,3,4,5},且A={2,3,4},B={1,2},
∴CUB={3,4,5},
A∩(∁UB)={3,4}.
故選:C.

點評 本題考查交集、補集的求法,是基礎(chǔ)題,解題時要認真審題,注意交集、補集定義的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知A={x|x2-2mx+m2-1<0}.
(1)若m=2,求A;
(2)已知1∈A,且3∉A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在極坐標系中,曲線C1:ρ=2cosθ,曲線C2:ρ=(ρ•cosθ+4)•cosθ.以極點為坐標原點,極軸為x軸正半軸建立直角坐標系xOy,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=2-\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù)).
(Ⅰ)求C1,C2的直角坐標方程;
(Ⅱ)C與C1,C2交于不同四點,這四點在C上的排列順次為H,I,J,K,求||HI|-|JK||的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知 a=20.5 b=logП3c=log2$\frac{1}{3}$則( 。
A.b>a>cB.b>c>aC.c>a>bD.a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在平面直角坐標系xOy中,橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦點為F(1,0),離心率為$\frac{{\sqrt{2}}}{2}$.分別過O,F(xiàn)的兩條弦AB,CD相交于點E(異于A,C兩點),且OE=EF=1.
(1)求橢圓的方程;
(2)求證:直線AC,BD的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,a=btanA,且B為鈍角.
(1)若$A=\frac{π}{6}$,求B;
(2)求sinA+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)集合A={y|y=-x2+2x+3,x∈R},B={y|y=5x2-10x+3,x∈R},則A∩B=( 。
A.[-2,4]B.(-2,4]C.[-2,4)D.(-2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.對于任意實數(shù)a,b,c,有以下命題:
①“a=b”是“ac=bc”的充要條件;
②“a+5是無理數(shù)”是“a是無理數(shù)”的充要條件;
③“(x-a)(x-b)=0”是“x=a”的充分條件;
④“a<5”是“a<3”的必要條件.
其中正確命題的序號是②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.從集合{0,1,2,3,4,5}中任取兩個互不相等的數(shù)x,y組成復(fù)數(shù)z=x+yi,其中虛數(shù)的個數(shù)有(  )
A.5B.30C.25D.36

查看答案和解析>>

同步練習(xí)冊答案