已知函數(shù)().
(1)若,求函數(shù)的極值;
(2)若,不等式恒成立,求實數(shù)的取值范圍.
(1)在處有極小值;(2).
解析試題分析:(1)求極值分三步:首先對函數(shù)求導,然后判斷的根是否為極值點,最后求出極值;
(2)要使,不等式恒成立,只要先利用導數(shù)求出的最小值,然后使最小值大于等于零即可.
試題解析:解: (1)當時,2分
令,解得,所以的單調(diào)增區(qū)間為(1,+∞);4分
,解得,所以的單調(diào)減區(qū)間為(0,1)..5分
所以函數(shù)在處有極小值..6分
(2)∵<0,由.令
列表:_ 0 + 減函數(shù) 極小值 增函數(shù)
8分
這是.10分
∵,不等式恒成立,∴,∴,
∴范圍為..12分
考點:1.利用導數(shù)求極值最值;2.恒成立問題.
科目:高中數(shù)學 來源: 題型:解答題
(1)求函數(shù)f(x)=x3-2x2-x+2的零點;
(2)已知函數(shù)f(x)=ln(x+1)-,試求函數(shù)的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=x2+(x≠0,a∈R).
(1)判斷函數(shù)f(x)的奇偶性;
(2)若f(x)在區(qū)間[2,+∞)上是增函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=2sin ωx-4sin 2+2+a(ω>0,a∈R),且f(x)的圖象在y軸右側的第一個最高點的橫坐標為2.
(1)求函數(shù)f(x)的最小正周期;
(2)若f(x)在區(qū)間[6,16]上的最大值為4,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)f(x)=ax-(1+a2)x2,其中a>0,區(qū)間I={x|f(x)>0}.
(1)求I的長度(注:區(qū)間(α,β)的長度定義為β-α);
(2)給定常數(shù)k∈(0,1),當1-k≤a≤1+k時,求I的長度的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com