如圖,過(guò)拋物線C:y2=4x上一點(diǎn)P(1,-2)作傾斜角互補(bǔ)的兩條直線,分別與拋物線交于點(diǎn)A(x,y1),B(x2,y2).

(1)求y1+y2的值;
(2)若y1≥0,y2≥0,求△PAB面積的最大值.

(1)y1+y2=4.(2)6

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,橢圓C:的左頂點(diǎn)為A,M是橢圓C上異于點(diǎn)A的任意一點(diǎn),點(diǎn)P與點(diǎn)A關(guān)于點(diǎn)M對(duì)稱.

(1)若點(diǎn)P的坐標(biāo),求m的值;
(2)若橢圓C上存在點(diǎn)M,使得,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

橢圓以雙曲線的實(shí)軸為短軸、虛軸為長(zhǎng)軸,且與拋物線交于兩點(diǎn).
(1)求橢圓的方程及線段的長(zhǎng);
(2)在圖像的公共區(qū)域內(nèi),是否存在一點(diǎn),使得的弦的弦相互垂直平分于點(diǎn)?若存在,求點(diǎn)坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,M、N分別是橢圓=1的頂點(diǎn),過(guò)坐標(biāo)原點(diǎn)的直線交橢圓于P、A兩點(diǎn),其中P在第一象限,過(guò)P作x軸的垂線,垂足為C,連結(jié)AC,并延長(zhǎng)交橢圓于點(diǎn)B,設(shè)直線PA的斜率為k.

(1)若直線PA平分線段MN,求k的值;
(2)當(dāng)k=2時(shí),求點(diǎn)P到直線AB的距離d;
(3)對(duì)任意k>0,求證:PA⊥PB..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C的方程為=1(a>b>0),雙曲線=1的兩條漸近線為l1、l2,過(guò)橢圓C的右焦點(diǎn)F作直線l,使l⊥l1.又l與l2交于P點(diǎn),設(shè)l與橢圓C的兩個(gè)交點(diǎn)由上至下依次為A、B(如圖).

(1)當(dāng)l1與l2夾角為60°,雙曲線的焦距為4時(shí),求橢圓C的方程;
(2)當(dāng)=λ,求λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓=1(a>b>0)的離心率為,短軸的一個(gè)端點(diǎn)為M(0,1),直線l:y=kx-與橢圓相交于不同的兩點(diǎn)A、B.
(1)若AB=,求k的值;
(2)求證:不論k取何值,以AB為直徑的圓恒過(guò)點(diǎn)M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

拋物線y2=2px的準(zhǔn)線方程為x=-2,該拋物線上的每個(gè)點(diǎn)到準(zhǔn)線x=-2的距離都與到定點(diǎn)N的距離相等,圓N是以N為圓心,同時(shí)與直線l1:y=x和l2:y=-x相切的圓,
(1)求定點(diǎn)N的坐標(biāo);
(2)是否存在一條直線l同時(shí)滿足下列條件:
①l分別與直線l1和l2交于A、B兩點(diǎn),且AB中點(diǎn)為E(4,1);
②l被圓N截得的弦長(zhǎng)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:=1(a>b>0),點(diǎn)A、B分別是橢圓C的左頂點(diǎn)和上頂點(diǎn),直線AB與圓G:x2+y2(c是橢圓的半焦距)相離,P是直線AB上一動(dòng)點(diǎn),過(guò)點(diǎn)P作圓G的兩切線,切點(diǎn)分別為M、N.

(1)若橢圓C經(jīng)過(guò)兩點(diǎn)、,求橢圓C的方程;
(2)當(dāng)c為定值時(shí),求證:直線MN經(jīng)過(guò)一定點(diǎn)E,并求·的值(O是坐標(biāo)原點(diǎn));
(3)若存在點(diǎn)P使得△PMN為正三角形,試求橢圓離心率的取值范圍..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A為橢圓=1的右頂點(diǎn),點(diǎn)D(1,0),點(diǎn)P、B在橢圓上,.
 
(1) 求直線BD的方程;
(2) 求直線BD被過(guò)P、A、B三點(diǎn)的圓C截得的弦長(zhǎng);
(3) 是否存在分別以PB、PA為弦的兩個(gè)相外切的等圓?若存在,求出這兩個(gè)圓的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案