已知A={x|y=
36-x2
},B={β|2kπ-
π
3
≤β≤2kπ+
π
3
,k∈Z},求A∩B.
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:集合A=[-6,6],對(duì)于集合B,討論k的取值,再與A相交.
解答: 解:化簡(jiǎn)集合A,B,得A=[-6,6],
①k=1時(shí),B=[
3
,
3
],A∩B=[
3
,6];
②k=-1時(shí),B=[-
3
,-
3
],A∩B=[-6,-
3
];
③k=0時(shí),B=[-
π
3
,
π
3
],A∩B=B=[-
π
3
,
π
3
];
④k≠±1,0時(shí),A∩B=∅.
點(diǎn)評(píng):本題考查了集合的運(yùn)算--交集;關(guān)鍵是將集合化簡(jiǎn),然后取它們的公共部分.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x|x-a|+bx,當(dāng)a=2時(shí),f(x)在R上單調(diào)遞增,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在三棱錐S-ABC中,AB=AC,SB=SC.求證:SA⊥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1,⊙O的直徑AB=4,點(diǎn)C,D為⊙O上任意兩點(diǎn),∠CAB=45°,∠DAB=60°,F(xiàn)為
BC
的中點(diǎn),沿直徑AB折起,使兩個(gè)半圓所在平面互相垂直.
(1)求證:OF∥面ACD;
(2)求二面角A-CD-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P是橢圓
x2
4
+y2=1上第一象限內(nèi)的點(diǎn),A(2,0),B(0,1),O為原點(diǎn),則四邊形OAPB面積的最大值為( 。
A、2
B、
2
+2
C、
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b表示直線,α,β表示平面,下列推理正確的是(  )
A、α∩β=a,b?α⇒a∥b
B、α∩β=a,a∥b⇒b∥α且b∥β
C、a∥β,b∥β,a?α,b?α⇒α∥β
D、α∥β,α∩γ=a,β∩γ=b⇒a∥b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中,是假命題的有
 
(寫出所有假命題的序號(hào))
①在等比數(shù)列(-∞,5]中,若a1=9,a5=1,則a3的值是±3;
②把函數(shù)y=sin(2x+
π
3
)
的圖象向右平移
π
3
個(gè)單位得到y(tǒng)=sin2x的圖象;
③點(diǎn)(
π
8
,0)
為函數(shù)f(x)=tan(2x+
π
4
)
圖象的一個(gè)對(duì)稱中心;
④若|
a
|=1,|
b
|=2
,向量
a
與向量
b
的夾角為120°,則
b
在向量
a
上的投影為1;
⑤函數(shù)f(x)=ln|x-1|+
1
x
有兩個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓
x2
9
+
y2
5
=1的兩個(gè)焦點(diǎn)為F1、F2,點(diǎn)P是橢圓上任意一點(diǎn)(非左右頂點(diǎn)),在△PF1F2的周長(zhǎng)為( 。
A、6B、8C、10D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a2、a5是方程x2-12x+27=0的兩根,數(shù)列{an}是遞增的等差數(shù)列,數(shù)列{bn}的前n項(xiàng)和為Sn,且Sn=1-
1
2
bn(n∈N+).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)記cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案