17.已知復(fù)數(shù)z的實(shí)部為a(a<0),虛部為1,模長(zhǎng)為2,$\overline{z}$是z的共軛復(fù)數(shù),則$\frac{1+\sqrt{3}i}{\overline{z}}$的值為( 。
A.$\frac{\sqrt{3}+i}{2}$B.-$\sqrt{3}$-iC.-$\sqrt{3}$+iD.-$\frac{\sqrt{3}+i}{2}$

分析 由復(fù)數(shù)z的實(shí)部為a(a<0),虛部為1,模長(zhǎng)為2,可求出a的值,得到復(fù)數(shù)z,再求出$\overline{z}$,然后代入$\frac{1+\sqrt{3}i}{\overline{z}}$,由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)計(jì)算可得答案.

解答 解:∵復(fù)數(shù)z的實(shí)部為a(a<0),虛部為1,
則復(fù)數(shù)z=a+i.
又模長(zhǎng)為2,∴$\sqrt{{a}^{2}+1}=2$,解得a=$-\sqrt{3}$.
∴z=$-\sqrt{3}+i$,$\overline{z}=-\sqrt{3}-i$.
則$\frac{1+\sqrt{3}i}{\overline{z}}$=$\frac{1+\sqrt{3}i}{-\sqrt{3}-i}=\frac{(1+\sqrt{3}i)(-\sqrt{3}+i)}{(-\sqrt{3}-i)(-\sqrt{3}+i)}$=$\frac{-2\sqrt{3}-2i}{4}=-\frac{\sqrt{3}+i}{2}$.
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖,在平行六面體A1C中,AD=AB=AA1=4,∠A1AB=60°,∠BAD=90°,∠A1AD=120°,cos∠A1AC=(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.0D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.若存在常數(shù)k(k∈N*,k≥2)、d、t(d,t∈R),使得無(wú)窮數(shù)列{an}滿足an+1=$\left\{\begin{array}{l}{{a}_{n}+d,\frac{n}{k}{∉N}^{*}}\\{{ta}_{n},\frac{n}{k}{∈N}^{*}}\end{array}\right.$,則稱數(shù)列{an}為“段差比數(shù)列”,其中常數(shù)k、d、t分別叫做段長(zhǎng)、段差、段比,設(shè)數(shù)列{bn}為“段差比數(shù)列”.
(1)已知{bn}的首項(xiàng)、段長(zhǎng)、段差、段比分別為1、2、d、t,若{bn}是等比數(shù)列,求d、t的值;
(2)已知{bn}的首項(xiàng)、段長(zhǎng)、段差、段比分別為1、3、3、1,其前3n項(xiàng)和為S3n,若不等式${S}_{3n}≤λ{(lán)•3}^{n-1}$對(duì)n∈N*恒成立,求實(shí)數(shù)λ的取值范圍;
(3)是否存在首項(xiàng)為b,段差為d(d≠0)的“段差比數(shù)列”{bn},對(duì)任意正整數(shù)n都有bn+6=bn.若存在,寫出所有滿足條件的{bn}的段長(zhǎng)k和段比t組成的有序數(shù)組(k,t);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.為了得到函數(shù)$y=sin(2x+\frac{π}{3})$的圖象,只需將函數(shù)y=sin2x的圖象上每一點(diǎn)( 。
A.向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度B.向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度
C.向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度D.向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)命題p:?x∈R,x2+1>0,則¬p為( 。
A.$?{x_0}∈R,{x^2}+1>0$B.$?{x_0}∈R,{x^2}+1≤0$C.$?{x_0}∈R,{x^2}+1<0$D.$?{x_0}∈R,{x^2}+1≤0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列函數(shù)中為奇函數(shù)的是( 。
A.y=xcosxB.y=xsinxC.y=|1nx|D.y=2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知集合A={x|$\frac{x-2}{x}$≤0},B={0,1,2,3},則A∩B=( 。
A.{1,2}B.{0,1,2}C.{1}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.對(duì)于數(shù)列{an},定義H0=$\frac{{{a_1}+2{a_2}+…+{2^{n-1}}{a_n}}}{n}$為{an}的“優(yōu)值”.現(xiàn)已知某數(shù)列的“優(yōu)值”H0=2n+1,記數(shù)列{an-20}的前n項(xiàng)和為Sn,則Sn的最小值為( 。
A.-64B.-68C.-70D.-72

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某中學(xué)的環(huán)保社團(tuán)參照國(guó)家環(huán)境標(biāo)準(zhǔn)制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級(jí)對(duì)應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會(huì)超過(guò)300):
空氣質(zhì)量指數(shù)(0,50](50,100](100,150](150,200](200,250](250,300]
空氣質(zhì)量等級(jí)1級(jí)優(yōu)2級(jí)良3級(jí)輕度污染4級(jí)中度污染5級(jí)重度污染6級(jí)嚴(yán)重污染
該社團(tuán)將該校區(qū)在2016年100天的空氣質(zhì)量指數(shù)監(jiān)測(cè)數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如圖,把該直方圖所得頻率估計(jì)為概率.
(Ⅰ)請(qǐng)估算2017年(以365天計(jì)算)全年空氣質(zhì)量?jī)?yōu)良的天數(shù)(未滿一天按一天計(jì)算);
(Ⅱ)該校2017年6月7、8、9日將作為高考考場(chǎng),若這三天中某天出現(xiàn)5級(jí)重度污染,需要凈化空氣費(fèi)用10000元,出現(xiàn)6級(jí)嚴(yán)重污染,需要凈化空氣費(fèi)用20000元,記這三天凈化空氣總費(fèi)用為X元,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案