【題目】已知命題p:x∈R,使2x>3x;命題q:x(0, ),tanx>sinx下列是真命題的是( )
A.(¬p)∧q
B.(¬p)∨(¬q)
C.p∧(¬q)
D.p∨(¬q)
【答案】D
【解析】解:x=﹣1時(shí),2x>3x , ∴命題p是真命題;
,x∈ ;
∴0<cosx<1,sinx>0;
∴ , ;
即tanx>sinx,∴命題q是真命題;
∴¬p是假命題,(¬p)∧q是假命題,¬q是假命題,(¬p)∨(¬q)是假命題,p∧(¬q)是假命題,p∨(¬q)為真命題.
故選D.
【考點(diǎn)精析】利用復(fù)合命題的真假對(duì)題目進(jìn)行判斷即可得到答案,需要熟知“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線C1的參數(shù)方程為 (θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4sinθ.
(1)把C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求C1與C2交點(diǎn)所在直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形, , ,平面底面, 為的中點(diǎn), 是棱上的點(diǎn), , .
(Ⅰ)求證:平面平面;
(Ⅱ)若三棱錐的體積是四棱錐體積的,設(shè),試確定的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某市2017年3月1日至16日的空氣質(zhì)量指數(shù)趨勢(shì)圖,空氣質(zhì)量指數(shù)小于表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于表示空氣重度污染,某人隨機(jī)選擇3月1日至3月14日中的某一天到達(dá)該市.
(1)若該人到達(dá)后停留天(到達(dá)當(dāng)日算1天),求此人停留期間空氣質(zhì)量都是重度污染的概率;
(2)若該人到達(dá)后停留3天(到達(dá)當(dāng)日算1天〉,設(shè)是此人停留期間空氣重度污染的天數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若,恒有成立,求實(shí)數(shù)的取值范圍;
(Ⅱ)若函數(shù)有兩個(gè)相異極值點(diǎn), ,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)袋子內(nèi)裝有2個(gè)綠球,3個(gè)黃球和若干個(gè)紅球(所有球除顏色外其他均相同),從中一次性任取2個(gè)球,每取得1個(gè)綠球得5分,每取得1個(gè)黃球得2分,每取得1個(gè)紅球得1分,用隨機(jī)變量表示2個(gè)球的總得分,已知得2分的概率為.
(Ⅰ)求袋子內(nèi)紅球的個(gè)數(shù);
(Ⅱ)求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=aln(2x+1)+bx+1.
(1)若函數(shù)y=f(x)在x=1處取得極值,且曲線y=f(x)在點(diǎn)(0,f(0))處的切線與直線2x+y﹣3=0平行,求a的值;
(2)若 ,試討論函數(shù)y=f(x)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某市的中學(xué)生中隨機(jī)調(diào)查了部分男生,獲得了他們的身高數(shù)據(jù),整理得到如下頻率分布直方圖.
(Ⅰ)求的值;
(Ⅱ)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,估計(jì)該市中學(xué)生中的全體男生的平均身高;
(Ⅲ)從該市的中學(xué)生中隨機(jī)抽取一名男生,根據(jù)直方圖中的信息,估計(jì)其身高在180 cm 以上的概率.若從全市中學(xué)的男生(人數(shù)眾多)中隨機(jī)抽取人,用表示身高在以上的男生人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{bn},{cn}滿足 (n+1) bn=an+1,(n+2) cn=,其中n∈N*.
(1)若數(shù)列{an}是公差為2的等差數(shù)列,求數(shù)列{cn}的通項(xiàng)公式;
(2)若存在實(shí)數(shù)λ,使得對(duì)一切n∈N*,有bn≤λ≤cn,求證:數(shù)列{an}是等差數(shù)列.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com