若函數(shù)f(x)=ax2+8x-6lnx在點M(1,f(1))處的切線方程為y=b.
(1)求a,b的值;
(2)求f(x)的單調遞增區(qū)間.
【答案】分析:(1)根據(jù)導數(shù)的幾何意義求出函數(shù)在x=1處的導數(shù),得到切線的斜率,根據(jù)切線的斜率等于0建立等式關系,求出a的值,然后根據(jù)切點在切線上求出b的值即可;
(2)先確定函數(shù)的定義域然后求導數(shù)fˊ(x),在函數(shù)的定義域內(nèi)解不等式fˊ(x)>0,求出的區(qū)間即為函數(shù)f(x)的單調遞增區(qū)間.
解答:解:(1)因為,
由題意,得a=-1
則f(x)=-x2+8x-6lnx,由題意f(1)=-1+8=7=b
故a=-1,b=7
(2)令,
則-2x2+8x-6>0⇒-2(x-1)(x-3)>0,⇒1<x<3
即f(x)的單調遞增區(qū)間為(1,3)
點評:本題主要考查了利用導數(shù)研究曲線上某點切線方程,以及利用導數(shù)研究函數(shù)的單調性等基礎題知識,考查運算求解能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

①命題“對任意的x∈R,x3-x2+1≤0”的否定是“存在x∈R,x3-x2+1>0”;
②函數(shù)f(x)=2x-x2的零點有2個;
③若函數(shù)f(x)=x2-|x+a|為偶函數(shù),則實數(shù)a=0;
④函數(shù)y=sinx(x∈[-π,π])圖象與x軸圍成的圖形的面積是S=
x
-x
sinxdx;
⑤若函數(shù)f(x)=
ax-5(x>6)
(4-
a
2
)x+4(x≤6)
,在R上是單調遞增函數(shù),則實數(shù)a的取值范圍為(1,8).
其中真命題的序號是
①③
①③
(寫出所有正確命題的編號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x),其定義域為D,若任取x1、x2∈D,且x1≠x2,若f(
x1+x2
2
)>
1
2
[f(x1)+f(x2)],則稱f(x)為定義域上的凸函數(shù).
(1)設f(x)=ax2(a>0),試判斷f(x)是否為其定義域上的凸函數(shù),并說明原因;
(2)若函數(shù)f(x)=㏒ax(a>0,且a≠1)為其定義域上的凸函數(shù),試求出實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=ax(a>0,a≠1)的反函數(shù)記為y=g(x),g(16)=2,則f(
12
)
=
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=ax-2+2010(a>0且a≠1)恒過一定點,此定點坐標為
(2,2011)
(2,2011)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•盧灣區(qū)一模)若函數(shù)f(x)=ax+b的零點為x=2,則函數(shù)g(x)=bx2-ax的零點是x=0和x=
-
1
2
-
1
2

查看答案和解析>>

同步練習冊答案