(本題滿分18分)

對于定義域?yàn)镈的函數(shù),如果存在區(qū)間,同時滿足:

①在內(nèi)是單調(diào)函數(shù);

②當(dāng)定義域是時,的值域也是.

則稱是該函數(shù)的“和諧區(qū)間”.

(1)求證:函數(shù)不存在“和諧區(qū)間”.

(2)已知:函數(shù)()有“和諧區(qū)間”,當(dāng)變化時,求出的最大值.

(3)易知,函數(shù)是以任一區(qū)間為它的“和諧區(qū)間”.試再舉一例有“和諧區(qū)間”的函數(shù),并寫出它的一個“和諧區(qū)間”.(不需證明,但不能用本題已討論過的及形如的函數(shù)為例)

(18分)(1)設(shè)是已知函數(shù)定義域的子集.,或,故函數(shù)在上單調(diào)遞增.

若是已知函數(shù)的“和諧區(qū)間”,則……………4分

故、是方程的同號的相異實(shí)數(shù)根.

無實(shí)數(shù)根,函數(shù)不存在“和諧區(qū)間”.………………6分

(2)設(shè)是已知函數(shù)定義域的子集.,或,故函數(shù)在上單調(diào)遞增.

若是已知函數(shù)的“和諧區(qū)間”,則……………10分

故、是方程,即的同號的相異實(shí)數(shù)根.

,,同號,只須,即或時,已知函數(shù)有“和諧區(qū)間”,,

當(dāng)時,取最大值………………14分

(3)如:和諧區(qū)間為、,當(dāng)?shù)膮^(qū)間;

     和諧區(qū)間為;

 和諧區(qū)間為;…………

……………………………………18分

閱卷時,除考慮值域外,請?zhí)貏e注意函數(shù)在該區(qū)間上是否單調(diào),不單調(diào)不給分.如舉及形如的函數(shù)不給分.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分18分,第(1)小題6分,第(2)小題6分,第(3)小題6分)

若數(shù)列滿足:是常數(shù)),則稱數(shù)列為二階線性遞推數(shù)列,且定義方程為數(shù)列的特征方程,方程的根稱為特征根; 數(shù)列的通項(xiàng)公式均可用特征根求得:

①若方程有兩相異實(shí)根,則數(shù)列通項(xiàng)可以寫成,(其中是待定常數(shù));

②若方程有兩相同實(shí)根,則數(shù)列通項(xiàng)可以寫成,(其中是待定常數(shù));

再利用可求得,進(jìn)而求得

根據(jù)上述結(jié)論求下列問題:

(1)當(dāng),)時,求數(shù)列的通項(xiàng)公式;

(2)當(dāng),)時,求數(shù)列的通項(xiàng)公式;

(3)當(dāng),)時,記,若能被數(shù)整除,求所有滿足條件的正整數(shù)的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆上海市盧灣區(qū)高三上學(xué)期期末數(shù)學(xué)理卷 題型:解答題

(本題滿分18分)本題共有3個小題,第1小題滿分4分,第2小題滿分8分,第3小題滿分6分.
已知負(fù)數(shù)和正數(shù),且對任意的正整數(shù)n,當(dāng)≥0時, 有[, ]=
[, ];當(dāng)<0時, 有[, ]= [, ].
(1)求證數(shù)列{}是等比數(shù)列;
(2)若,求證;
(3)是否存在,使得數(shù)列為常數(shù)數(shù)列?請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟(jì)寧市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分18分)已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸正半軸上,點(diǎn)到其準(zhǔn)線的距離等于5.

(Ⅰ)求拋物線C的方程;

(Ⅱ)如圖,過拋物線C的焦點(diǎn)的直線從左到右依次與拋物線C及圓交于A、C、D、B四點(diǎn),試證明為定值;

(Ⅲ)過A、B分別作拋物C的切線交于點(diǎn)M,求面積之和的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市青浦區(qū)高三上學(xué)期期終學(xué)習(xí)質(zhì)量調(diào)研測試數(shù)學(xué)試卷 題型:解答題

(本題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

設(shè),對于項(xiàng)數(shù)為的有窮數(shù)列,令中最大值,稱數(shù)列的“創(chuàng)新數(shù)列”.例如數(shù)列3,5,4,7的創(chuàng)新數(shù)列為3,5,5,7.

考查自然數(shù)的所有排列,將每種排列都視為一個有窮數(shù)列

(1)若,寫出創(chuàng)新數(shù)列為3,4,4,4的所有數(shù)列;

(2)是否存在數(shù)列的創(chuàng)新數(shù)列為等比數(shù)列?若存在,求出符合條件的創(chuàng)新數(shù)列;若不存在,請說明理由.

(3)是否存在數(shù)列,使它的創(chuàng)新數(shù)列為等差數(shù)列?若存在,求出滿足所有條件的數(shù)列的個數(shù);若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題

(本題滿分18分,其中第1小題6分,第2小題6分,第3小題6分)
已知數(shù)列的首項(xiàng)為1,前項(xiàng)和為,且滿足,.?dāng)?shù)列滿足.
(1) 求數(shù)列的通項(xiàng)公式;
(2) 當(dāng)時,試比較的大小,并說明理由;
(3) 試判斷:當(dāng)時,向量是否可能恰為直線的方向向量?請說明你的理由.

查看答案和解析>>

同步練習(xí)冊答案