已知函數(shù)其中為自然對數(shù)的底數(shù), .(Ⅰ)設(shè),求函數(shù)的最值;(Ⅱ)若對于任意的,都有成立,求的取值范圍.

【解析】第一問中,當(dāng)時(shí),,.結(jié)合表格和導(dǎo)數(shù)的知識(shí)判定單調(diào)性和極值,進(jìn)而得到最值。

第二問中,∵,,      

∴原不等式等價(jià)于:,

, 亦即

分離參數(shù)的思想求解參數(shù)的范圍

解:(Ⅰ)當(dāng)時(shí),

當(dāng)上變化時(shí),的變化情況如下表:

 

 

1/e

時(shí),,

(Ⅱ)∵,,      

∴原不等式等價(jià)于:,

, 亦即

∴對于任意的,原不等式恒成立,等價(jià)于恒成立,

∵對于任意的時(shí), (當(dāng)且僅當(dāng)時(shí)取等號(hào)).

∴只需,即,解之得.

因此,的取值范圍是

 

【答案】

(Ⅰ) ,. (Ⅱ) 的取值范圍是

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
a2x
,g(x)=x+lnx,其中a>0.
(Ⅰ)若x=1是函數(shù)h(x)=f(x)+g(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(Ⅱ)是否存在正實(shí)數(shù)a,使對任意的x1,x2∈[1,e](e為自然對數(shù)的底數(shù))都有f(x1)≥g(x2)成立,若存在,求出實(shí)數(shù)a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
lnx+kex
(k為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線y=f(x) 在點(diǎn)(1,f(1))處的切線與x軸平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=(x2+x)f′(x),其中f′(x)是f(x)的導(dǎo)函數(shù).證明:對任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若存在實(shí)常數(shù),使得函數(shù)對其定義域上的任意實(shí)數(shù)分別滿足:,則稱直線的“隔離直線”.已知,(其中為自然對數(shù)的底數(shù)),根據(jù)你的數(shù)學(xué)知識(shí),推斷間的隔離直線方程為                  .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(山東卷解析版) 題型:解答題

已知函數(shù)為常數(shù),是自然對數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸平行.

(Ⅰ)求的值;

(Ⅱ)求的單調(diào)區(qū)間;

(Ⅲ)設(shè),其中的導(dǎo)函數(shù).證明:對任意.

 

查看答案和解析>>

同步練習(xí)冊答案