為了在夏季降溫和冬季供暖時(shí)減少能源消耗,房屋的屋頂和外墻需要建造隔熱層,某棟建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元.該建筑物每年的能源消耗費(fèi)用(單位:萬(wàn)元)與隔熱層厚度(單位:)滿(mǎn)足關(guān)系:
若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元。設(shè)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和。
(Ⅰ)求的值及的表達(dá)式;
(Ⅱ)隔熱層修建多厚時(shí),總費(fèi)用最小,并求最小值.

(Ⅰ);(Ⅱ)當(dāng)時(shí),最小值為70.

解析試題分析:(Ⅰ)由,及若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元,即時(shí),,設(shè)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和,每厘米厚的隔熱層建造成本為6萬(wàn)元,厚度厘米的隔熱層建造成本為萬(wàn)元,建筑物每年的能源消耗費(fèi)用(單位:萬(wàn)元)與隔熱層厚度(單位:)滿(mǎn)足關(guān)系:20年的能源消耗費(fèi)用為,故;(Ⅱ)隔熱層修建多厚時(shí),總費(fèi)用最小,并求最小值,由的解析式可知,,有基本不等式即可求出。
試題解析:(Ⅰ)由題意,當(dāng)時(shí),那么那么

(Ⅱ)

等號(hào)成立時(shí)    答:略.
考點(diǎn):應(yīng)用題,基本不等式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某跨國(guó)飲料公司對(duì)全世界所有人均GDP(即人均純收入)在0.5—8千美元的地區(qū)銷(xiāo)售,該公司M飲料的銷(xiāo)售情況的調(diào)查中發(fā)現(xiàn):人均GDP處在中等的地區(qū)對(duì)該飲料的銷(xiāo)售量最多,然后向兩邊遞減.
(1)下列幾個(gè)模擬函數(shù)中(x表示人均GDP,單位:千美元;y表示年人均M飲料的銷(xiāo)量,單位:升),用哪個(gè)來(lái)描述人均,飲料銷(xiāo)量與地區(qū)的人均GDP的關(guān)系更合適?說(shuō)明理由.

A. B. C. D.
(2)若人均GDP為1千美元時(shí),年人均M飲料的銷(xiāo)量為2升;人均GDP為4千美元時(shí),年人均M飲料的銷(xiāo)量為5升;把你所選的模擬函數(shù)求出來(lái).;
(3)因?yàn)镸飲料在N國(guó)被檢測(cè)出殺蟲(chóng)劑的含量超標(biāo),受此事件影響,M飲料在人均GDP不高于3千美元的地區(qū)銷(xiāo)量下降5%,不低于6千美元的地區(qū)銷(xiāo)量下降5%,其他地區(qū)的銷(xiāo)量下降10%,根據(jù)(2)所求出的模擬函數(shù),求在各個(gè)地區(qū)中,年人均M飲料的銷(xiāo)量最多為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知向量,,其中.函數(shù)在區(qū)間上有最大值為4,設(shè).
(1)求實(shí)數(shù)的值;
(2)若不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某種商品原來(lái)每件售價(jià)為25元,年銷(xiāo)售8萬(wàn)件.
(1)據(jù)市場(chǎng)調(diào)查,若價(jià)格每提高1元,銷(xiāo)售量將相應(yīng)減少2000件,要使銷(xiāo)售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?
(2)為了擴(kuò)大該商品的影響力,提高年銷(xiāo)售量.公司決定明年對(duì)該商品進(jìn)行全面技術(shù)革新和營(yíng)銷(xiāo)策略改革,并提高定價(jià)到元.公司擬投入萬(wàn)元作為技改費(fèi)用,投入50萬(wàn)元作為固定宣傳費(fèi)用,投入萬(wàn)元作為浮動(dòng)宣傳費(fèi)用.試問(wèn):當(dāng)該商品明年的銷(xiāo)售量至少應(yīng)達(dá)到多少萬(wàn)件時(shí),才可能使明年的銷(xiāo)售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某企業(yè)生產(chǎn)某種商品噸,此時(shí)所需生產(chǎn)費(fèi)用為()萬(wàn)元,當(dāng)出售這種商品時(shí),每噸價(jià)格為萬(wàn)元,這里為常數(shù),
(1)為了使這種商品的生產(chǎn)費(fèi)用平均每噸最低,那么這種商品的產(chǎn)量應(yīng)為多少?lài)崳?br />(2)如果生產(chǎn)出來(lái)的商品能全部賣(mài)完,當(dāng)產(chǎn)量是120噸時(shí)企業(yè)利潤(rùn)最大,此時(shí)出售價(jià)格是每噸160萬(wàn)元,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某廠(chǎng)家準(zhǔn)備在2013年12月份舉行促銷(xiāo)活動(dòng),依以往的數(shù)據(jù)分析,經(jīng)測(cè)算,該產(chǎn)品的年銷(xiāo)售量萬(wàn)件(假設(shè)該廠(chǎng)生產(chǎn)的產(chǎn)品全部銷(xiāo)售),與年促銷(xiāo)費(fèi)用萬(wàn)元近似滿(mǎn)足,如果不促銷(xiāo),該產(chǎn)品的年銷(xiāo)售量只能是1萬(wàn)件.已知2013年生產(chǎn)該產(chǎn)品的固定投入10萬(wàn)元,每生產(chǎn)1萬(wàn)件該產(chǎn)品需要再投入16萬(wàn)元.廠(chǎng)家將每件產(chǎn)品的銷(xiāo)售價(jià)格規(guī)定為每件產(chǎn)品成本的1.5倍.(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(1)將2013年該產(chǎn)品的年利潤(rùn)萬(wàn)元表示為年促銷(xiāo)費(fèi)用萬(wàn)元的函數(shù);
(2)該廠(chǎng)家2013年的年促銷(xiāo)費(fèi)用投入為多少萬(wàn)元時(shí),該廠(chǎng)家的年利潤(rùn)最大?并求出年最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),其中是實(shí)數(shù),設(shè)為該函數(shù)的圖象上的兩點(diǎn),且.
⑴指出函數(shù)的單調(diào)區(qū)間;
⑵若函數(shù)的圖象在點(diǎn)處的切線(xiàn)互相垂直,且,求的最小值;
⑶若函數(shù)的圖象在點(diǎn)處的切線(xiàn)重合,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)的圖像頂點(diǎn)為,且圖像在軸截得的線(xiàn)段長(zhǎng)為6.
(Ⅰ)求
(Ⅱ)若在區(qū)間上單調(diào),求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)判斷函數(shù)的奇偶性,并說(shuō)明理由。
(2)若,求使成立的集合。

查看答案和解析>>

同步練習(xí)冊(cè)答案