分析 由B和范圍和特殊角的三角函數(shù)值求出B,由題意和余弦定理化簡后,由基本不等式求出ac的范圍,得到b的范圍,可求△ABC周長的范圍.
解答 解:由0<B<π得,$\frac{π}{4}$<$\frac{3}{2}$B+$\frac{π}{4}$<$\frac{7π}{4}$,
∵sin($\frac{3}{2}$B+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,∴$\frac{3}{2}$B+$\frac{π}{4}$=$\frac{3π}{4}$,
解得B=$\frac{π}{3}$,
又∵a+c=2,
∴由余弦定理可得,b2=a2+c2-2accosB=(a+c)2-2ac-ac=4-3ac,
∵a+c=2,a+c≥2$\sqrt{ac}$,當(dāng)且僅當(dāng)a=c時(shí)取等號,
∴0<ac≤1,則-3≤-3ac<0,
則1≤b2<4,即1≤b<2.
∴△ABC周長L=a+b+c=b+2∈[3,4).
故答案為:[3,4).
點(diǎn)評 本題考查了余弦定理,內(nèi)角的范圍和特殊角的三角函數(shù)值,以及基本不等式在求最值中的應(yīng)用,考查化簡、變形能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {3,5} | B. | {2,4,6} | C. | {1,2,4,6} | D. | {1,2,3,5,6} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1} | B. | {1,2} | C. | {2,3} | D. | {1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{12}{25}$ | B. | -$\frac{12}{25}$ | C. | $\frac{24}{25}$ | D. | -$\frac{24}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1} | B. | {0} | C. | {2,3} | D. | {1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
x | 1 | 2 | 3 | 4 |
f(x) | 2 | 3 | 4 | 1 |
f′(x) | 3 | 4 | 2 | 1 |
g(x) | 3 | 1 | 4 | 2 |
g′(x) | 2 | 4 | 1 | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com