在△ABC中,BC=3,CA=4,AB=5,M是邊AB上的動點(含A,B兩個端點).若
CM
CA
CB
(λ,μ∈R),則|λ
CA
CB
|的取值范圍是
 
考點:平面向量數(shù)量積的運算
專題:平面向量及應用
分析:如圖所示,由已知可得∠C=90°.斜邊AB上的高h=
12
5
.而
CM
CA
CB
=(3μ,4λ),可得|
CM
|
=
9μ2+16λ2
[
12
5
,4]
.即可得出|λ
CA
CB
|=
9μ2+16λ2
解答: 解:如圖所示,
∵BC=3,CA=4,AB=5,32+42=52,
∴∠C=90°.
∴斜邊AB上的高h=
12
5

CM
CA
CB
=λ(0,4)+μ(3,0)=(3μ,4λ),
|
CM
|
=
9μ2+16λ2
[
12
5
,4]

∵λ
CA
CB
=λ(0,4)-μ(3,0)=(-3μ,4λ).
則|λ
CA
CB
|=
9μ2+16λ2
[
12
5
,4]

故答案為:[
12
5
,4]
點評:本題考查了向量坐標運算、數(shù)量積運算性質(zhì)、模的計算公式,考查了推理能力與計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖(1),在邊長為2的正方形ABCD中,E是邊AB的中點.將△ADE沿DE折起使得平面ADE⊥平面BCDE,如圖(2),F(xiàn)是折疊后AC的中點.

(Ⅰ)求證:BF∥平面ADE;
(Ⅱ)求二面角E-AB-D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,曲線E是由拋物線弧E1:y2=4x(0≤x≤
2
3
)與橢圓弧E2
x2
a2
+
y2
b2
=1(
2
3
≤x≤a)所圍成的封閉曲線,且E1與E2有相同的焦點.
(Ⅰ)求橢圓弧E2的方程;
(Ⅱ)設過點F(1,0)的直線與曲線E交于A,B兩點,|FA|=r1,|FB|=r2,且∠AFx=α(0≤α≤π),試用cosα表示r1;并求
r1
r2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為迎接2015年在蘭州舉行的“中國蘭州國際馬拉松比賽”,某單位在推介晚會中進行嘉賓現(xiàn)在抽獎活動,抽獎盒中裝有大小相同的6個小球,分別印有“蘭州馬拉松”和“綠色金城行”兩種標志,搖勻后,規(guī)定參加者每次從盒中同時抽取兩個小球(登記后放回并搖勻),若抽到的兩個球都印有“蘭州馬拉松”標志即可獲獎.并停止取球;否則繼續(xù),但每位嘉賓最多抽取3次,已知從盒中抽取兩個小球不都是“綠色金城行”標志的概率為
4
5

(Ⅰ)求盒中印有“蘭州馬拉松”標志的小球的個數(shù);
(Ⅱ)若用η表示這位嘉賓抽取的次數(shù),求η的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有100件規(guī)格相同的鐵件(鐵的密度是7.8g/cm3),該鐵件的三視圖如圖所示,其中正視圖,側(cè)視圖均是由三角形與半圓構成,俯視圖由圓與內(nèi)接三角形構成(圖中單位cm).
(1)指出該幾何體的形狀特征;
(2)根據(jù)圖中的數(shù)據(jù),求出此幾何體的體積;
(3)問這100件鐵件的質(zhì)量大約有多重(π取3.1,
2
取1.4)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正四面體ABCD的棱長為a.點E,F(xiàn)分別是棱AC,BD的中點,則
AE
AF
的值是(  )
A、a2
B、
1
2
a2
C、
1
4
a2
D、
3
4
a2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若雙曲線
x2
a2
-
y2
9
=1(a>0)的離心率為2,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在面積為2的平行四邊形ABCD中,點P為直線AD上的動點,則
PB
PC
+
BC
2的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①若(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,則|a1|+|a2|+|a3|+|a4|+|a5|=32
②α,β,γ是三個不同的平面,則“γ⊥α,γ⊥β”是“α∥β”的充分條件
③已知sin(θ-
π
6
)=
1
3
,則cos(
π
3
-2θ)=
7
9

其中正確命題的個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

同步練習冊答案