【題目】已知函數(shù),.
(Ⅰ)若,討論函數(shù)的單調(diào)性;
(Ⅱ)若對任意的,都有,求實數(shù)的取值范圍.
【答案】(Ⅰ)分類討論,詳見解析;(Ⅱ).
【解析】
(Ⅰ)求導后,分別在、和三種情況下求得的正負,由此可確定單調(diào)性;
(Ⅱ)令,分別在、和三種情況下,利用導數(shù)確定單調(diào)性和最值,進而確定符合題意的取值范圍.
(Ⅰ)由題意得:定義域為,
則,
①當時,
由可得:或;由可得:;
的單調(diào)增區(qū)間為,,單調(diào)遞減區(qū)間為;
②當時,則,此時的單調(diào)遞增區(qū)間為;
③當時,
由可得:或;由可得:;
的單調(diào)增區(qū)間為,,單調(diào)遞減區(qū)間為;
綜上所述:當時,在,上單調(diào)遞增,在上單調(diào)遞減;當時,在上單調(diào)遞增;當時,在,上單調(diào)遞增,在上單調(diào)遞減.
(Ⅱ)令,則,
,
①當時,令,解得:,,
,,
當時,,在上單調(diào)遞增,
,滿足題意;
②當時,由①知:,
當時,,在上單調(diào)遞減,
則當時,,不合題意;
③當時,,則,在上單調(diào)遞減,
當時,,不合題意;
綜上所述:實數(shù)的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的四棱錐中,四邊形為平行四邊形,為邊長為2的等邊三角形,,點,分別為,的中點,是異面直線和的公垂線.
(1)證明:平面平面;
(2)記的重心為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解全市統(tǒng)考情況,從所有參加考試的考生中抽取4000名考生的成績,頻率分布直方圖如下圖所示.
(1)求這4000名考生的半均成績(同一組中數(shù)據(jù)用該組區(qū)間中點作代表);
(2)由直方圖可認為考生考試成績z服從正態(tài)分布,其中分別取考生的平均成績和考生成績的方差,那么抽取的4000名考生成績超過84.81分(含84.81分)的人數(shù)估計有多少人?
(3)如果用抽取的考生成績的情況來估計全市考生的成績情況,現(xiàn)從全市考生中隨機抽取4名考生,記成績不超過84.81分的考生人數(shù)為,求.(精確到0.001)
附:①;
②,則;
③.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】保險公司對一個擁有20000人的企業(yè)推出一款意外險產(chǎn)品,每年每位職工只要交少量保費,發(fā)生意外后可一次性獲得若干賠償金,保險公司把企業(yè)的所有崗位共分為三類工種,從事這三類工種的人數(shù)分別為12000,6000,2000,由歷史數(shù)據(jù)統(tǒng)計出三類工種的賠付頻率如下表(并以此估計賠付概率):
已知三類工種職工每人每年需交的保費分別為25元25元40元,出險后的賠償金額分別為100萬元100萬元50萬元,保險公司在開展此項業(yè)務過程中的固定支出為每年10萬元.
(1)設(shè)A類工種職工的每份保單保險公司的收益為隨機變量X(元),求X的數(shù)學期望;
(2)若該公司全員參加保險,求保險公司該業(yè)務所獲利潤的期望值;
(3)現(xiàn)有如下兩個方案供企業(yè)選擇:
方案1:企業(yè)不與保險公司合作,職工不交保險,若出意外,企業(yè)自行拿出與保險公司提供的等額賠償金賠付給出意外職工,且企業(yè)開展這項工作每年還需另外固定支出12萬元;
方案2:企業(yè)與保險公司合作,企業(yè)負責職工保費的70%,職工個人負責保費的30%,出險后賠償金由保險公司賠付,企業(yè)無額外專項開支.
請根據(jù)企業(yè)成本差異給出選擇合適方案的建議.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下圖是某校某班44名同學的某次考試的物理成績y和數(shù)學成績x的散點圖:
根據(jù)散點圖可以看出y與x之間有線性相關(guān)關(guān)系,但圖中有兩個異常點A,B.經(jīng)調(diào)查得知,A考生由于重感冒導致物理考試發(fā)揮失常,B生因故未能參加物理考試.為了使分析結(jié)果更科學準確,剔除這兩組數(shù)據(jù)后,對剩下的數(shù)據(jù)作處理,得到一些統(tǒng)計量的值:
,,,,,其中,分別表示這42名同學的數(shù)學成績、物理成績,.y與x的相關(guān)系數(shù).
(1)若不剔除A、B兩名考生的數(shù)據(jù),用44數(shù)據(jù)作回歸分析,設(shè)此時y與x的相關(guān)系數(shù)為,試判斷與r的大小關(guān)系,并說明理由;
(2)求y關(guān)于x的線性回歸方程(系數(shù)精確到),并估計如果B考生參加了這次物理考試(已知B考生的數(shù)學成績?yōu)?/span>125分),物理成績是多少?(精確到個位).
附:回歸方程中,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)拋物線的焦點為,直線與拋物線交于兩點.
(1)若過點,且,求的斜率;
(2)若,且的斜率為,當時,求在軸上的截距的取值范圍(用表示),并證明的平分線始終與軸平行.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù).
(1)若函數(shù)有兩個極值點,求實數(shù)的取值范圍;
(2)設(shè),若當時,函數(shù)的兩個極值點滿足,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)一個盒子里裝有三張卡片,分別標記有數(shù)字,,,這三張卡片除標記的數(shù)字外完全相同。隨機有放回地抽取次,每次抽取張,將抽取的卡片上的數(shù)字依次記為,,.
(Ⅰ)求“抽取的卡片上的數(shù)字滿足”的概率;
(Ⅱ)求“抽取的卡片上的數(shù)字,,不完全相同”的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com