【題目】已知橢圓的中心在原點,焦點在軸,離心率為,短軸長為2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè),過橢圓左焦點的直線交于,兩點,若對滿足條件的任意直線,不等式恒成立,求的最小值.
【答案】(1);(2)
【解析】
(1)根據(jù)條件列方程組,解得,,即得結(jié)果;
(2)先討論直線斜率不存在情況,得,再研究直線斜率存在情況,設(shè)直線方程與橢圓方程聯(lián)立,利用向量數(shù)量積以及韋達定理化簡得關(guān)于直線斜率的函數(shù)關(guān)系式,根據(jù)分式函數(shù)單調(diào)性確定函數(shù)值域,最后比較兩種情況得結(jié)果.
(1)依題意,,解得,,∴橢圓的標(biāo)準(zhǔn)方程為.
(2)設(shè),,
當(dāng)直線垂直于軸時,,且,
此時,,∴.
當(dāng)直線不垂直于軸時,設(shè)直線:,
由,得,
∴,,
∴,
∴
.
要使不等式恒成立,
只需,即的最小值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若曲線在點處的切線方程是,不等式的解集為非空集合,其中為自然對數(shù)的底數(shù).
(Ⅰ)求的解析式,并用表示;
(Ⅱ)若任意,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()經(jīng)過與兩點.
(1)求橢圓的方程;
(2)過原點的直線與橢圓交于兩點,橢圓上一點滿足,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長為1,為的中點,在側(cè)面上,有下列四個命題:
①若,則面積的最小值為;
②平面內(nèi)存在與平行的直線;
③過作平面,使得棱,,在平面的正投影的長度相等,則這樣的平面有4個;
④過作面與面平行,則正方體在面的正投影面積為.
則上述四個命題中,真命題的個數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別是線段AB、AD、AA1的中點,又P、Q分別在線段A1B1、A1D1上,且A1P=A1Q=x(0<x<1).設(shè)平面MEF∩平面MPQ
=l,現(xiàn)有下列結(jié)論:
①l∥平面ABCD;
②l⊥AC;
③直線l與平面BCC1B1不垂直;
④當(dāng)x變化時,l不是定直線.
其中不成立的結(jié)論是________.(寫出所有不成立結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點為,是橢圓上一點,軸,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓交于、兩點,線段的中點為,為坐標(biāo)原點,且,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,右焦點的坐標(biāo)為,且點在橢圓上.
(1)求橢圓的方程及離心率;
(2)過點的直線交橢圓于兩點(直線不與軸垂直),已知點與點關(guān)于軸對稱,證明:直線恒過定點,并求出此定點坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com