【題目】現(xiàn)有四個函數(shù):①y=xsinx;②y=xcosx;③y=x|cosx|;④y=x2x的圖象(部分)如圖:
則按照從左到右圖象對應(yīng)的函數(shù)序號安排正確的一組是(
A.①④③②
B.③④②①
C.④①②③
D.①④②③

【答案】D
【解析】解:根據(jù)①y=xsinx為偶函數(shù),它的圖象關(guān)于y軸對稱,故第一個圖象即是; 根據(jù)②y=xcosx為奇函數(shù),它的圖象關(guān)于原點對稱,它在(0, )上的值為正數(shù),
在( ,π)上的值為負數(shù),故第三個圖象滿足;
根據(jù)③y=x|cosx|為奇函數(shù),當x>0時,f(x)≥0,故第四個圖象滿足;④y=x2x , 為非奇非偶函數(shù),故它的圖象沒有對稱性,故第2個圖象滿足,
故選:D.
根據(jù)各個函數(shù)的奇偶性、函數(shù)值的符號,判斷函數(shù)的圖象特征,即可得到.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生小王在學(xué)習(xí)完解三角形的相關(guān)知識后,用所學(xué)知識測量高為AB 的煙囪的高度.先取與煙囪底部B在同一水平面內(nèi)的兩個觀測點C,D,測得∠BDC=60°,∠BCD=75°,CD=40米,并在點C處的正上方E處觀測頂部 A的仰角為30°,且CE=1米,則煙囪高 AB=米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“a≤0”是“函數(shù)f(x)=|(ax﹣1)x|在區(qū)間(0,+∞)內(nèi)單調(diào)遞增”的(
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系xOy中,直線l的方程為x﹣y+4=0,曲線C的參數(shù)方程為
(1)已知在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為 ,判斷點P與直線l的位置關(guān)系;
(2)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AB∥CD,AD=CD=1,∠BAD=120°,PA= ,∠ACB=90°,M是線段PD上的一點(不包括端點). (Ⅰ)求證:BC⊥平面PAC;
(Ⅱ)求二面角D﹣PC﹣A的正切值;
(Ⅲ)試確定點M的位置,使直線MA與平面PCD所成角θ的正弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}為等差數(shù)列,a1=3且(a3﹣1)是(a2﹣1)與a4的等比中項.
(1)求an;
(2)若數(shù)列{an}的前n項和為Sn , bn= ,Tn=﹣b1+b2+b3+…+(﹣1)nbn , 求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)在定義域R上的導(dǎo)函數(shù)為f′(x),若方程f'(x)=0無解,且f[f(x)﹣2017x]=2017,當g(x)=sinx﹣cosx﹣kx在[﹣ ]上與f(x)在R上的單調(diào)性相同時,則實數(shù)k的取值范圍是(
A.(﹣∞,﹣1]
B.(﹣∞, ]
C.[﹣1, ]
D.[ ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln(1+x)﹣x﹣ax2 , a∈R. (Ⅰ)若函數(shù)f(x)在區(qū)間 上有單調(diào)遞增區(qū)間,求實數(shù)a的取值范圍;
(Ⅱ)證明不等式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xoy中,過橢圓 右焦點的直線 交橢圓C于M,N兩點,P為M,N的中點,且直線OP的斜率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)另一直線l與橢圓C交于A,B兩點,原點O到直線l的距離為 ,求△AOB面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案