【題目】已知直線l:y=x+4,動(dòng)圓⊙O:x2+y2=r2(1<r<2),菱形ABCD的一個(gè)內(nèi)角為60°,頂點(diǎn)A、B在直線l上,頂點(diǎn)C、D在⊙O上.當(dāng)r變化時(shí),求菱形ABCD的面積S的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(多選題)下列判斷錯(cuò)誤的是( )
A.的最小值為2B.{菱形}{矩形}={正方形}
C.方程組的解集為D.如果,那么
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(a為實(shí)常數(shù)).
(1)若,作函數(shù)的圖象并寫出單調(diào)減區(qū)間;
(2)當(dāng)時(shí),設(shè)在區(qū)間上的最小值為,求的表達(dá)式;
(3)當(dāng)時(shí)對(duì)于函數(shù)和函數(shù),若對(duì)任意的,總存在使成立,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=ln(ax+b)+x2(a≠0).
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=x,求a、b的值;
(2)若f(x)≤x2+x恒成立,求ab的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,過(guò)點(diǎn)的圓的圓心C在x軸上,且與過(guò)原點(diǎn)傾斜角為30°的直線l相切.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)求直線被圓C截得的弦長(zhǎng);
(3)點(diǎn)P在直線m:上,過(guò)點(diǎn)P作⊙C的切線PM、PN,切點(diǎn)分別為M、N,求經(jīng)過(guò)P、M、N、C四點(diǎn)的圓所過(guò)的定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若是素?cái)?shù),證明存在0,1,2,…,的一個(gè)排列(,,…,),使得,,,…,.被除的余數(shù)各不相同.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù);
(1)當(dāng)時(shí),若,求的取值范圍;
(2)若定義在上的奇函數(shù)滿足,且當(dāng),,求在上的解析式;
(3)對(duì)于(2)中的,若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,已知平面,且四邊形為直角梯形,,,.
(1)證明:;
(2)求平面與平面所成銳二面角的余弦值;
(3)點(diǎn)是線段上的動(dòng)點(diǎn),當(dāng)直線與所成的角最小時(shí),求線段的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com