如下圖,在邊長為4的正方形ABCD上有一點(diǎn)P,沿著折線BCDA由B點(diǎn)(起點(diǎn))向A點(diǎn)(終點(diǎn))移動,設(shè)P點(diǎn)移動的路程為x,△ABP的面積為y=f(x).

(1)求△ABP的面積與P移動的路程間的函數(shù)關(guān)系式;

(2)作出函數(shù)的圖象,并根據(jù)圖象求y的最大值.

解:(1)這個函數(shù)的定義域為(0,12).

    當(dāng)0<x≤4時,S=f(x)=·4·x=2x;

    當(dāng)4<x≤8時,S=f(x)=8;

    當(dāng)8<x<12時,S=f(x)=·4·(12-x)=2(12-x)=24-2x.

    ∴這個函數(shù)的解析式為

    f(x)=

     (2)其圖形為

    由圖知,f(x)max=8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在一次數(shù)學(xué)實(shí)踐活動課上,老師給一個活動小組安排了這樣的一個任務(wù):設(shè)計一個方案,將一塊邊長為4米的正方形鐵片,通過裁剪、拼接的方式,將它焊接成容積至少有5立方米的長方體無蓋容器(只有一個下底面和側(cè)面的長方體).該活動小組接到任務(wù)后,立刻設(shè)計了一個方案,如下圖所示,按圖1在正方形鐵片的四角裁去四個相同的小正方形后,將剩下的部分焊接成長方體(如圖2).請你分析一下他們的設(shè)計方案切去邊長為多大的小正方形后能得到的最大容積,最大容積是多少?是否符合要求?若不符合,請你幫他們再設(shè)計一個能符合要求的方案,簡單說明操作過程和理由.精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:導(dǎo)學(xué)大課堂必修一數(shù)學(xué)蘇教版 蘇教版 題型:044

如下圖,在邊長為4的正方形ABCD上有一點(diǎn)P,沿著折線BC、CD、DA由B點(diǎn)(起點(diǎn))向A點(diǎn)(終點(diǎn))移動,設(shè)P點(diǎn)移動的路程為x,△ABP的面積為y.求△ABP的面積與P移動的路程間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在邊長為4的正方形ABCD的邊上有一動點(diǎn)P,從B點(diǎn)開始,沿折線BCDA向A點(diǎn)運(yùn)動(如下圖),設(shè)P點(diǎn)移動的距離為x,△ABP的面積為y,求函數(shù)y=f(x)及其定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年山東省日照實(shí)驗高中高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

在一次數(shù)學(xué)實(shí)踐活動課上,老師給一個活動小組安排了這樣的一個任務(wù):設(shè)計一個方案,將一塊邊長為4米的正方形鐵片,通過裁剪、拼接的方式,將它焊接成容積至少有5立方米的長方體無蓋容器(只有一個下底面和側(cè)面的長方體).該活動小組接到任務(wù)后,立刻設(shè)計了一個方案,如下圖所示,按圖1在正方形鐵片的四角裁去四個相同的小正方形后,將剩下的部分焊接成長方體(如圖2).請你分析一下他們的設(shè)計方案切去邊長為多大的小正方形后能得到的最大容積,最大容積是多少?是否符合要求?若不符合,請你幫他們再設(shè)計一個能符合要求的方案,簡單說明操作過程和理由.

查看答案和解析>>

同步練習(xí)冊答案