下列命題中真命題是( 。
A、?x0∈R,ex0≤0
B、?x∈R,2x>x2
C、若a<1,則
1
a
>1
D、a>1,b>1是ab>1的充分條件
考點:命題的真假判斷與應(yīng)用
專題:閱讀型,函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用,簡易邏輯
分析:由指數(shù)函數(shù)的值域,叫可可判斷A;舉反例,比如若x=2,即可判斷B;
舉a=-1,即可判斷C;運用充分必要條件的定義,結(jié)合不等式的性質(zhì),即可判斷D.
解答: 解:對于A.由指數(shù)函數(shù)的值域可知ex>0,則A錯誤;
對于B.若x=2,則2x=22=4,x2=22=4,則B錯誤;
對于C.若a=-1,則
1
a
=-1<1,則C錯誤;
對于D.a(chǎn)>1,b>1,則ab>1,由充分必要條件的定義,a>1,b>1,是ab>1的充分條件,則D正確.
故選D.
點評:本題考查存在性命題和全稱性命題的真假判斷,考查充分必要的定義,考查判斷能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知不同的三點A、B、C滿足
AB
BC
(λ∈R,λ≠0),使得關(guān)于x的方程x2
OA
+x
OB
-
OC
=
0
有解(點O不在直線AB上),則此方程在實數(shù)范圍內(nèi)的解集為( 。
A、∅
B、{-1,0}
C、{-1}
D、{
-1+
5
2
,
-1-
5
2
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2k2x+k,x∈[0,1],函數(shù)g(x)=3x2-2(k2+k+1)x+5,x∈[-1,0].對任意x1∈[0,1],存在x2∈[-1,0],g(x2)<f(x1)成立.求k的取值范圍.(gmin(x)<fmin(x))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列x,a1,a2,…,am,y和x,b1,b2…,bn,y都是等差數(shù)列,公差分別為d1,d2,且x≠y,則d1:d2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
x
+lnx,g(x)=
1
2
bx2-2x+2,a,b∈R.
(Ⅰ)記函數(shù)h(x)=f(x)+g(x),當(dāng)a=0,h(x)在(0,1)上有且只有一個極值點,求實數(shù)b的取值范圍;
(Ⅱ)記函數(shù)F(x)=|f(x)|,若存在一條過原點的直線l與y=F(x)的圖象有兩個切點,求a的取值范圍,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是R上的奇函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增,若a=f(sin
7
),b=f(cos
7
),c=f(tan
7
),則(  )
A、b<a<c
B、c<b<a
C、b<c<a
D、a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的定義域和值域;
(1)y=
1
1+tanx
;
(2)y=lgtanx+
16-x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=tanωx(ω>0)的圖象的相鄰兩支截直線y=1所得線段為
π
4
,則f(
π
12
)的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐S-ABC中,△ABC是等腰三角形,AB=BC=2a,∠ABC=120°,且SA⊥平面ABC,SA=3a,求點A到平面SBC有距離.

查看答案和解析>>

同步練習(xí)冊答案