4.函數(shù)y=5sin(3x+$\frac{π}{6}$),x∈R的最小正周期是(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{3π}{2}$D.π

分析 由y=Asin(ωx+φ),周期公式T=$\frac{2π}{ω}$,即可求得y=5sin(3x+$\frac{π}{6}$),x∈R的最小正周期.

解答 解:由y=Asin(ωx+φ),周期公式T=$\frac{2π}{ω}$,
∴y=5sin(3x+$\frac{π}{6}$),x∈R的最小正周期T=$\frac{2π}{3}$,
故選B.

點(diǎn)評(píng) 本題考查y=Asin(ωx+φ)的周期公式,考查正弦函數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{1}{x-1}$-$\frac{2}{{\sqrt{x-1}}}$+2.
(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)若g(x)=f($\frac{{1+{x^2}}}{x^2}$),(x≠0),求g(x)的解析式和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知向量$\overrightarrow{a}$與$\overrightarrow$不平行,且|$\overrightarrow{a}$|=|$\overrightarrow$|≠0,則下列結(jié)論中正確的是(  )
A.向量$\overrightarrow{a}+\overrightarrow$與$\overrightarrow{a}-\overrightarrow$垂直B.向量$\overrightarrow{a}-\overrightarrow$與$\overrightarrow{a}$垂直
C.向量$\overrightarrow{a}+\overrightarrow$與$\overrightarrow{a}$垂直D.向量$\overrightarrow{a}+\overrightarrow$與$\overrightarrow{a}-\overrightarrow$平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.如圖①,已知ABCD為平行四邊形,∠A=60°,AF=2FB,AB=6,點(diǎn)E在CD上,EF∥BC,BD⊥AD,BD交EF于點(diǎn)N,現(xiàn)將四邊形ADEF沿EF折起,使點(diǎn)D在平面BCEF上的射影恰在直線BC上(如圖②),則折后直線DN與直線BF所成角的余弦值為$\frac{{\sqrt{3}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列函數(shù)中,既是偶函數(shù),又是在區(qū)間(0,+∞)上單遞減的函數(shù)是( 。
A.y=ln$\frac{1}{|x|}$B.y=x3C.y=ln(x+$\sqrt{{x^2}+1}$)D.y=sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.過(guò)橢圓$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{9}$=1的中心任作一直線交橢圓于P,Q兩點(diǎn),F(xiàn)是橢圓的一個(gè)焦點(diǎn),則△PQF周長(zhǎng)的最小值是( 。
A.14B.16C.18D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.(1)在△ABC中,求證:$\frac{a}$-$\frac{a}$=c($\frac{cosB}$-$\frac{cosA}{a}$);
(2)在△ABC中,已知(a2-b2)sin(A+B)=(a2+b2)sin(A-B),判定△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知等比數(shù)列{an}中,a1=-16,a4=2,則前4項(xiàng)的和S4等于( 。
A.20B.-20C.10D.-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列四組式子中,f(x)與g(x)表示同一函數(shù)的是(  )
A.f(x)=x-1,x∈R,g(x)=x-1,x∈NB.$f(x)=\frac{{{x^2}-4}}{x+2}$,g(x)=x-2
C.f(x)=x,$g(x)={({\sqrt{x}})^2}$D.f(x)=2x-1,g(t)=2t-1

查看答案和解析>>

同步練習(xí)冊(cè)答案