【題目】已知一個(gè)12位的正整數(shù)可以被37整除,且只包含數(shù)碼,求這個(gè)12為數(shù)的各位數(shù)字之和的所有可能值.
【答案】
【解析】
設(shè)滿足
,且,
令,取,
則,其中,,且,
取,
則,且,
設(shè),
則 ,
由,知 ,
易知.故對(duì)任意,
.
從而,與中之一模37同余.
由為12位數(shù)知都小于等于4.
令,
則,且,
故,
又,
故,令,
又,故,從而,.
(1)當(dāng)時(shí),,
下面構(gòu)造數(shù)滿足條件,
則 ,
取,滿足條件,其中,為高斯函數(shù).
(2)當(dāng)時(shí),,
若,則,
由下表知,
其中, 表示時(shí)的取值.
但,均大于4,矛盾,
若,
則,
由表1知,但,均大于4,矛盾.
故
由對(duì)稱性,,
(3)類似(2)知,,
(4)當(dāng)時(shí),,若,
則,
由表1知,
則,
對(duì),取,
則滿足條件,.
由對(duì)稱性,時(shí),取滿足條件,.
(5)當(dāng)時(shí),類似(4)知,
對(duì),取,
則滿足條件,.
由對(duì)稱性,時(shí),取滿足條件,,
綜上,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)是定義在上的不恒為零的函數(shù),對(duì)于任意實(shí)數(shù)滿足: ,, 考查下列結(jié)論:① ;②為奇函數(shù);③數(shù)列為等差數(shù)列;④數(shù)列為等比數(shù)列.
以上結(jié)論正確的是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線段、交于點(diǎn),在的延長(zhǎng)線上任取一點(diǎn),得凸四邊形,求證:、、的外接圓三圓共點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)A、B分別是橢圓長(zhǎng)軸的左、右端點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓上,且位于軸上方,.
(1)求點(diǎn)P的坐標(biāo);
(2)設(shè)M是橢圓長(zhǎng)軸AB上的一點(diǎn),M到直線AP的距離等于,求橢圓上的點(diǎn)到點(diǎn)M的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】新高考方案的實(shí)施,學(xué)生對(duì)物理學(xué)科的選擇成了焦點(diǎn)話題. 某學(xué)校為了了解該校學(xué)生的物理成績(jī),從,兩個(gè)班分別隨機(jī)調(diào)查了40名學(xué)生,根據(jù)學(xué)生的某次物理成績(jī),得到班學(xué)生物理成績(jī)的頻率分布直方圖和班學(xué)生物理成績(jī)的頻數(shù)分布條形圖.
(Ⅰ)估計(jì)班學(xué)生物理成績(jī)的眾數(shù)、中位數(shù)(精確到)、平均數(shù)(各組區(qū)間內(nèi)的數(shù)據(jù)以該組區(qū)間的中點(diǎn)值為代表);
(Ⅱ)填寫列聯(lián)表,并判斷是否有的把握認(rèn)為物理成績(jī)與班級(jí)有關(guān)?
物理成績(jī)的學(xué)生數(shù) | 物理成績(jī)的學(xué)生數(shù) | 合計(jì) | |
班 | |||
班 | |||
合計(jì) |
附:列聯(lián)表隨機(jī)變量;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓左頂點(diǎn)為M,上頂點(diǎn)為N,直線MN的斜率為.
(Ⅰ)求橢圓的離心率;
(Ⅱ)直線l:與橢圓交于A,C兩點(diǎn),與y軸交于點(diǎn)P,以線段AC為對(duì)角線作正方形ABCD,若.
()求橢圓方程;
()若點(diǎn)E在直線MN上,且滿足,求使得最長(zhǎng)時(shí),直線AC的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)橢圓的左、右焦點(diǎn)分別為,點(diǎn)在橢圓上,的面積為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)圓心在軸上的圓與橢圓在軸的上方有兩個(gè)交點(diǎn),且圓在這兩個(gè)交點(diǎn)處的兩條切線相互垂直并分別過(guò)不同的焦點(diǎn),求圓的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】年年初,新冠肺炎疫情防控工作全面有序展開(kāi).某社區(qū)對(duì)居民疫情防控知識(shí)進(jìn)行了網(wǎng)上調(diào)研,調(diào)研成績(jī)?nèi)慷荚?/span>分到分之間.現(xiàn)從中隨機(jī)選取位居民的調(diào)研成績(jī)進(jìn)行統(tǒng)計(jì),繪制了如圖所示的頻率分布直方圖.
求的值,并估計(jì)這位居民調(diào)研成績(jī)的中位數(shù);
在成績(jī)?yōu)?/span>,的兩組居民中,用分層抽樣的方法抽取位居民,再?gòu)?/span>位居民中隨機(jī)抽取位進(jìn)行詳談.記為位居民的調(diào)研成績(jī)?cè)?/span>的人數(shù),求隨機(jī)變量的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過(guò)點(diǎn)的直線的參數(shù)方程為(為參數(shù)),直線與曲線相交于兩點(diǎn).
(Ⅰ)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(Ⅱ)若,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com