【題目】在四棱錐中,.
(1)設(shè)與相交于點(diǎn),,且平面,求實(shí)數(shù)的值;
(2)若且, 求二面角的正弦值.
【答案】(1)見(jiàn)解析;(2)
【解析】分析:(1)由 易得,然后利用平面性質(zhì)易得實(shí)數(shù)的值;(2)先證明平面,以為坐標(biāo)原點(diǎn),的方向?yàn)?/span>軸的正方向建 立空間直角坐標(biāo)系,求出平面與平面的法向量,代入公式可得二面角的正弦值.
詳解:(1)因?yàn)?/span>,所以.
因?yàn)?/span>,平面,平面平面,
所以.
所以,即.
(2)因?yàn)?/span>,可知為等邊三角形,
所以,又,
故,所有.
由已知,所以平面,
如圖,以為坐標(biāo)原點(diǎn),的方向?yàn)?/span>軸的正方向建
立空間直角坐標(biāo)系,設(shè),則,
所以,則,
設(shè)平面的一個(gè)法向量為,則有
即
設(shè),則,所以,
設(shè)平面的一個(gè)法向量為,由已知可得
即
令,則,所以 .
所以,
設(shè)二面角的平面角為,則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)在以為直徑的圓上, 垂直與圓所在平面, 為的垂心.
(1)求證:平面平面;
(2)若,點(diǎn)在線段上,且,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(Ⅰ)若,且是函數(shù)的一個(gè)極值,求函數(shù)的最小值;
(Ⅱ)若,求證:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知頂點(diǎn)是坐標(biāo)原點(diǎn)的拋物線的焦點(diǎn)在軸正半軸上,圓心在直線上的圓與軸相切,且關(guān)于點(diǎn)對(duì)稱.
(1)求和的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)的直線與交于,與交于,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)求直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
購(gòu)買(mǎi)某種保險(xiǎn),每個(gè)投保人每年度向保險(xiǎn)公司交納保費(fèi)元,若投保人在購(gòu)買(mǎi)保險(xiǎn)的一年度內(nèi)出險(xiǎn),則可以獲得10 000元的賠償金.假定在一年度內(nèi)有10 000人購(gòu)買(mǎi)了這種保險(xiǎn),且各投保人是否出險(xiǎn)相互獨(dú)立.已知保險(xiǎn)公司在一年度內(nèi)至少支付賠償金10 000元的概率為。
(Ⅰ)求一投保人在一年度內(nèi)出險(xiǎn)的概率;
(Ⅱ)設(shè)保險(xiǎn)公司開(kāi)辦該項(xiàng)險(xiǎn)種業(yè)務(wù)除賠償金外的成本為50 000元,為保證盈利的期望不小于0,求每位投保人應(yīng)交納的最低保費(fèi)(單位:元)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《中華人民共和國(guó)道路交通安全法》第47條規(guī)定:機(jī)動(dòng)車(chē)行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速慢行;遇到行人正在通過(guò)人行橫道,應(yīng)當(dāng)停車(chē)讓行,俗稱“禮讓斑馬線”.下表是某十字路口監(jiān)控設(shè)備所抓拍的6個(gè)月內(nèi)駕駛員不“禮讓斑馬線”行為的統(tǒng)計(jì)數(shù)據(jù):
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
不“禮讓斑馬線”駕駛員人數(shù) | 120 | 105 | 100 | 85 | 90 | 80 |
(Ⅰ)請(qǐng)根據(jù)表中所給前5個(gè)月的數(shù)據(jù),求不“禮讓斑馬線”的駕駛員人數(shù)與月份之間的回歸直線方程;
(Ⅱ)若該十字路口某月不“禮讓斑馬線”駕駛員人數(shù)的實(shí)際人數(shù)與預(yù)測(cè)人數(shù)之差小于5,則稱該十字路口“禮讓斑馬線”情況達(dá)到“理想狀態(tài)”.試根據(jù)(Ⅰ)中的回歸直線方程,判斷6月份該十字路口“禮讓斑馬線”情況是否達(dá)到“理想狀態(tài)”?
(Ⅲ)若從表中3、4月份分別選取4人和2人,再?gòu)乃x取的6人中任意抽取2人進(jìn)行交規(guī)調(diào)查,求抽取的兩人恰好來(lái)自同一月份的概率.
參考公式: ,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,點(diǎn)為橢圓上的動(dòng)點(diǎn),若的最大值和最小值分別為和.
(I)求橢圓的方程
(Ⅱ)設(shè)不過(guò)原點(diǎn)的直線與橢圓 交于兩點(diǎn),若直線的斜率依次成等比數(shù)列,求面積的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線.
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若對(duì)任意時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com