【題目】瑞士著名數(shù)學家歐拉在研究幾何時曾定義歐拉三角形,的三個歐拉點(頂點與垂心連線的中點)構(gòu)成的三角形稱為的歐拉三角形.如圖,的歐拉三角形(H的垂心).已知,,若在內(nèi)部隨機選取一點,則此點取自陰影部分的概率為________.

【答案】

【解析】

由三角函數(shù)的余弦定理得:AB3,建立平面直角坐標系,利用坐標法得到陰影三角形的面積,從而利用幾何概型公式得到結(jié)果.

解:因為tanACB2,所以cosACB,

又因為AC3,BC2

由余弦定理可得:AB3,

BC的中點O,則OABC,

O為原點,建立如圖所示的直角坐標系,

B(﹣1,0),C10),A0,2),設(shè)H0,y),

因為BHAC

所以1,

所以y,從而S,

故所求概率為:,

故答案為:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若恒成立,求實數(shù)的最大值;

(2)在(1)成立的條件下,正實數(shù)滿足,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的首項,且.

1)證明:是等比數(shù)列;

2)若,中是否存在連續(xù)三項成等差數(shù)列?若存在,寫出這三項,若不存在,請說明理由;

3)若是遞減數(shù)列,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F1、F2分別是雙曲線1a0,b0)的左、右焦點,若雙曲線的右支上存在一點P,使得(0O為坐標原點),且|PF1||PF2|,則雙曲線的離心率的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】秉承提升學生核心素養(yǎng)的理念,學校開設(shè)以提升學生跨文化素養(yǎng)為核心的多元文化融合課程.選某藝術(shù)課程的學生唱歌、跳舞至少會一項,已知會唱歌的有人,會跳舞的有人,現(xiàn)從中選人,設(shè)為選出的人中既會唱歌又會跳舞的人數(shù),且

(1)求選該藝術(shù)課程的學生人數(shù);

(2)寫出的概率分布列并計算.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】世界互聯(lián)網(wǎng)大會是由中國倡導并每年在浙江省嘉興市桐鄉(xiāng)烏鎮(zhèn)舉辦的世界性互聯(lián)網(wǎng)盛會,大會旨在搭建中國與世界互聯(lián)互通的國際平臺和國際互聯(lián)網(wǎng)共享共治的中國平臺,讓各國在爭議中求共識在共識中謀合作在合作中創(chuàng)共贏.20191020日至22日,第六屆世界互聯(lián)網(wǎng)大會如期舉行,為了大會順利召開,組委會特招募了1 000名志愿者.某部門為了了解志愿者的基本情況,調(diào)查了其中100名志愿者的年齡,得到了他們年齡的中位數(shù)為34歲,年齡在歲內(nèi)的人數(shù)為15,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:

1)求,的值并估算出志愿者的平均年齡(同一組的數(shù)據(jù)用該組區(qū)間的中點值代表);

2)這次大會志愿者主要通過現(xiàn)場報名和登錄大會官網(wǎng)報名,即現(xiàn)場和網(wǎng)絡兩種方式報名調(diào)查.100位志愿者的報名方式部分數(shù)據(jù)如下表所示,完善下面的表格,通過計算說明能

否在犯錯誤的概率不超過0.001的前提下,認為選擇哪種報名方式與性別有關(guān)系”?

男性

女性

總計

現(xiàn)場報名

50

網(wǎng)絡報名

31

總計

50

參考公式及數(shù)據(jù):,其中.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(題文)在三棱錐中,底面,且三棱錐的每個頂點都在球的表面上,則球的表面積為 _______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】九章算術(shù)給出求羨除體積的“術(shù)”是:“并三廣,以深乘之,又以袤乘之,六而一”,其中的“廣”指羨除的三條平行側(cè)棱的長,“深”指一條側(cè)棱到另兩條側(cè)棱所在平面的距離,“袤”指這兩條側(cè)棱所在平行線之間的距離,用現(xiàn)代語言描述:在羨除中,,,,兩條平行線間的距離為h,直線到平面的距離為,則該羨除的體積為已知某羨除的三視圖如圖所示,則該羨除的體積為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等比數(shù)列{an}中,an>0 (nN ),公比q(0,1),a1a5+2a3a5a2a8=25,又a3a5的等比中項為2.

(1) 求數(shù)列{an}的通項公式;

(2) 設(shè),數(shù)列{bn}的前n項和為Sn,當最大時,求n的值.

查看答案和解析>>

同步練習冊答案