【題目】設(shè)銳角△ABC的三內(nèi)角A、B、C所對(duì)邊的邊長(zhǎng)分別為a、b、c,且 a=1,B=2A,則b的取值范圍為(
A.( ,
B.(1,
C.( ,2)
D.(0,2)

【答案】A
【解析】解:銳角△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,B=2A,
∴0<2A< ,且B+A=3A,
<3A<π.
<A< ,
<cosA< ,
∵a=1,B=2A,
∴由正弦定理可得: =b= =2cosA,
<2cosA< ,
則b的取值范圍為( ).
故選A
由題意可得0<2A< ,且 <3A<π,解得A的范圍,可得cosA的范圍,由正弦定理求得 =b=2cosA,根據(jù)cosA的范圍確定出b范圍即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= x3 (m+3)x2+(m+6)x,x∈R.(其中m為常數(shù))
(1)當(dāng)m=4時(shí),求函數(shù)的極值點(diǎn)和極值;
(2)若函數(shù)y=f(x)在區(qū)間(0,+∞)上有兩個(gè)極值點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知分別是焦距為的橢圓的左、右頂點(diǎn), 為橢圓上非頂點(diǎn)的點(diǎn),直線的斜率分別為,且.

(1)求橢圓的方程;

(2)直線(與軸不重合)過(guò)點(diǎn)且與橢圓交于兩點(diǎn),直線交于點(diǎn),試求點(diǎn)的軌跡是否是垂直軸的直線,若是,則求出點(diǎn)的軌跡方程,若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出如下幾個(gè)結(jié)論:①命題“x∈R,sinx+cosx=2”的否定是“x∈R,sinx+cosx≠2”;②命題“x∈R,sinx+ ≥2”的否定是“x∈R,sinx+ <2”;③對(duì)于x∈(0, ),tanx+ ≥2;
x∈R,使sinx+cosx= .其中正確的為(
A.③
B.③④
C.②③④
D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等比數(shù)列{an}滿足2a1+a3=3a2 , 且a3+2是a2 , a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=an+log2 ,Sn=b1+b2+…bn , 求使 Sn﹣2n+1+47<0 成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)寫出曲線的參數(shù)方程和曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)在曲線上,點(diǎn)在曲線上,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”,執(zhí)行該程序框圖,若輸入的分別為14,18,則輸出的為( )

A. 0 B. 2 C. 4 D. 14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校在2013年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組:第1組[160,165),第2組[165,170),第3組[170,175),第4組[175,180),第5組[180,85],得到的頻率分布直方圖如圖所示.
(1)求第3,4,5組的頻率;
(2)為了能選拔出最優(yōu)秀的學(xué)生,該校決定在筆試成績(jī)高的第3,4,5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,求第3,4,5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知| |=4,| |=3,(2 ﹣3 )(2 + )=61.
的夾角;
②求| + |和| |.

查看答案和解析>>

同步練習(xí)冊(cè)答案