【題目】在平面直角坐標(biāo)系中,曲線參數(shù)方程為為參數(shù)),將曲線上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)變?yōu)樵瓉淼?/span>,得到曲線.
(1)求曲線的普通方程;
(2)過點(diǎn)且傾斜角為的直線與曲線交于兩點(diǎn),求取得最小值時(shí)的值.
【答案】(1) ;(2)
【解析】
(1)利用消去參數(shù),求得曲線的直角坐標(biāo)方程.根據(jù)坐標(biāo)變換的知識(shí)求得的普通方程.
(2)設(shè)出直線的參數(shù)方程,代入的方程并寫出根與系數(shù)關(guān)系,求得弦長的表達(dá)式,并利用三角函數(shù)最值的求法求得取得最小值時(shí)的值.
(1)將曲線參數(shù)方程為參數(shù))的參數(shù)消去,得到直角坐標(biāo)方程為,設(shè)上任意一點(diǎn)為,經(jīng)過伸縮變換后的坐標(biāo)為,由題意得:
,故;
(2)過點(diǎn)傾斜角為的直線的參數(shù)方程為:為參數(shù)),帶入的方程得:,
記對(duì)于的參數(shù)分別為,,
,
故當(dāng)時(shí),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知△ABC的面積為
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)時(shí),證明:,;
(2)若函數(shù)在上存在兩個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的各項(xiàng)均為正數(shù),其前項(xiàng)和為,且滿足,若數(shù)列滿足,且等式對(duì)任意成立.
(1)求數(shù)列的通項(xiàng)公式;
(2)將數(shù)列與的項(xiàng)相間排列構(gòu)成新數(shù)列,設(shè)該新數(shù)列為,求數(shù)列的通項(xiàng)公式和前項(xiàng)的和;
(3)對(duì)于(2)中的數(shù)列前項(xiàng)和,若對(duì)任意都成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為菱形,,,,,點(diǎn)為的中點(diǎn).
(1)求證:平面;
(2)求平面與平面所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)曲線是焦點(diǎn)在軸上的橢圓,兩個(gè)焦點(diǎn)分別是是,,且,是曲線上的任意一點(diǎn),且點(diǎn)到兩個(gè)焦點(diǎn)距離之和為4.
(1)求的標(biāo)準(zhǔn)方程;
(2)設(shè)的左頂點(diǎn)為,若直線:與曲線交于兩點(diǎn),(,不是左右頂點(diǎn)),且滿足,求證:直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos4x+sin2x,下列結(jié)論中錯(cuò)誤的是( )
A. f(x)是偶函數(shù)
B. 函數(shù)f(x)最小值為
C. 是函數(shù)f(x)的一個(gè)周期
D. 函數(shù)f(x)在內(nèi)是減函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列滿足:對(duì)于任意的正整數(shù),,,且,則稱該數(shù)列為“跳級(jí)數(shù)列”.
(1)若數(shù)列為“跳級(jí)數(shù)列”,且,求、的值;
(2)若數(shù)列為“跳級(jí)數(shù)列”,則對(duì)于任意一個(gè)大于的質(zhì)數(shù),在數(shù)列中總有一項(xiàng)是的倍數(shù);
(3)若為奇質(zhì)數(shù),則存在一個(gè)“跳級(jí)數(shù)列”,使得數(shù)列中每一項(xiàng)都不是的倍數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某汽車公司最近研發(fā)了一款新能源汽車,并在出廠前對(duì)100輛汽車進(jìn)行了單次最大續(xù)航里程的測試,F(xiàn)對(duì)測試數(shù)據(jù)進(jìn)行分析,得到如圖所示的頻率分布直方圖:
(1)估計(jì)這100輛汽車的單次最大續(xù)航里程的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表).
(2)根據(jù)大量的汽車測試數(shù)據(jù),可以認(rèn)為這款汽車的單次最大續(xù)航里程近似地服從正態(tài)分布,經(jīng)計(jì)算第(1)問中樣本標(biāo)準(zhǔn)差的近似值為50。用樣本平均數(shù)作為的近似值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,現(xiàn)任取一輛汽車,求它的單次最大續(xù)航里程恰在250千米到400千米之間的概率.
參考數(shù)據(jù):若隨機(jī)變量服從正態(tài)分布,則,,.
(3)某汽車銷售公司為推廣此款新能源汽車,現(xiàn)面向意向客戶推出“玩游戲,送大獎(jiǎng)”活動(dòng),客戶可根據(jù)拋擲硬幣的結(jié)果,操控微型遙控車在方格圖上行進(jìn),若遙控車最終停在“勝利大本營”,則可獲得購車優(yōu)惠券3萬元。已知硬幣出現(xiàn)正、反面的概率都是0.5方格圖上標(biāo)有第0格、第1格、第2格、…、第20格。遙控車開始在第0格,客戶每擲一次硬幣,遙控車向前移動(dòng)一次。若擲出正面,遙控車向前移動(dòng)一格(從到)若擲出反面遙控車向前移動(dòng)兩格(從到),直到遙控車移到第19格勝利大本營)或第20格(失敗大本營)時(shí),游戲結(jié)束。設(shè)遙控車移到第格的概率為P試證明是等比數(shù)列,并求參與游戲一次的顧客獲得優(yōu)惠券金額的期望值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com