【題目】為了研究不同性別在處理多任務(wù)時(shí)的表現(xiàn)差異,召集了男女志愿者各200名,要求他們同時(shí)完成多個(gè)任務(wù),包括解題、讀地圖、接電話.下圖表示了志愿者完成任務(wù)所需的時(shí)間分布.以下結(jié)論,對(duì)志愿者完成任務(wù)所需的時(shí)間分布圖表理解正確的是( )
①總體看女性處理多任務(wù)平均用時(shí)更短;
②所有女性處理多任務(wù)的能力都要優(yōu)于男性;
③男性的時(shí)間分布更接近正態(tài)分布;
④女性處理多任務(wù)的用時(shí)為正數(shù),男性處理多任務(wù)的用時(shí)為負(fù)數(shù).
A.①④B.②③C.①③D.②④
【答案】C
【解析】
圖像為對(duì)志愿者完成任務(wù)所需的時(shí)間分布圖表,利用圖像依次分析即可
由圖,女性處理多任務(wù)用時(shí)主要集中在2到3分鐘,男性處理多任務(wù)用時(shí)主要集中在3到4分鐘,故總體來(lái)看女性處理多任務(wù)用時(shí)更短,故①正確;
女性中也有處理多任務(wù)用時(shí)在5分鐘的,并不是所有女性處理多任務(wù)能力都要優(yōu)于男性,故②錯(cuò)誤;
從圖像上來(lái)看男性的時(shí)間分布更接近正態(tài)分布,故③正確;
男性、女性處理多任務(wù)的用時(shí)均為正數(shù),故④錯(cuò)誤;
綜上,①③正確,
故選:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓O:x2+y2=3上的一動(dòng)點(diǎn)M在x軸上的投影為N,點(diǎn)P滿足.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)若直線l與圓O相切,且交曲線C于點(diǎn)A,B,試求|AB|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且acosC=(2b﹣c)cosA.
(1)若3,求△ABC的面積;
(2)若∠B<∠C,求2cos2B+cos2C的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,且acos C+asin C-b-c=0.
(1)求A;
(2)若AD為BC邊上的中線,cos B=,AD=,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的方程為,過(guò)點(diǎn)的直線的參數(shù)方程為(為參數(shù)).
(Ⅰ)求直線的普通方程與曲線的直角坐標(biāo)方程;
(Ⅱ)若直線與曲線交于、兩點(diǎn),求的值,并求定點(diǎn)到,兩點(diǎn)的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線T的焦點(diǎn)為F,準(zhǔn)線為l,過(guò)F的直線m與T交于A,B兩點(diǎn),C,D分別為A,B在l上的射影,M為AB的中點(diǎn),若m與l不平行,則△CMD是( )
A. 等腰三角形且為銳角三角形
B. 等腰三角形且為鈍角三角形
C. 等腰直角三角形
D. 非等腰的直角三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)的圖象在處的切線與軸平行,求的值;
(2)當(dāng)時(shí),恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓的離心率為,右準(zhǔn)線方程為,、分別是橢圓的左、右頂點(diǎn),過(guò)右焦點(diǎn)且斜率為的直線與橢圓相交于,兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)記、的面積分別為、,若,求的值;
(3)設(shè)線段的中點(diǎn)為,直線與右準(zhǔn)線相交于點(diǎn),記直線、、的斜率分別為、、,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,M是橢圓C的上頂點(diǎn),,F(xiàn)2是橢圓C的焦點(diǎn),的周長(zhǎng)是6.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)動(dòng)點(diǎn)P(1,t)作直線交橢圓C于A,B兩點(diǎn),且|PA|=|PB|,過(guò)P作直線l,使l與直線AB垂直,證明:直線l恒過(guò)定點(diǎn),并求此定點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com