已知三棱錐S—ABC的三條側(cè)棱兩兩垂直,且SA=2,SB=SC=4,則該三棱錐的外接球的半徑為
A.3B.6
C.36D.9
A
因?yàn)槿忮FS—ABC的三條側(cè)棱兩兩垂直,所以該三棱錐的外接球就是以三棱錐S—ABC的三條側(cè)棱為棱的長方體的外接球;長方體的外接球的直徑等于長方體對角線;所以外接球的半徑為故選A
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖正方形BCDE的邊長為a,已知AB=BC,將直角△ABE沿BE邊折起,A點(diǎn)在面BCDE上的射影為D點(diǎn),則翻折后的幾何體中有如下描述:
(1)ADE所成角的正切值是;
(2)的體積是;
(3)AB∥CD;
(4)平面EAB⊥平面ADEB;
(5)直線PA與平面ADE所成角的正弦值為
其中正確的敘述有_____(寫出所有正確結(jié)論的編號)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,已知PD⊥平面ABCD,底面ABCD是正方形,PD=AB,M是PA的中點(diǎn),則二面角M-DC-A的大小為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方體的棱長為1,過點(diǎn)作平面的垂線,垂足為,則以下命題中,錯誤的命題是          
①點(diǎn)的垂心; ②垂直平面;
的延長線經(jīng)過點(diǎn); ④直線所成的角為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)如圖,在直三棱柱中,AB=AC=5,BB1=BC=6,D,E分別是AA1和B1C的中點(diǎn)

(1)求證:DE∥平面ABC;
(2)求三棱錐E-BCD的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)本題共有2個小題,第1小題滿分7分,第2小題滿分7分.
(理科)已知四棱錐的底面是直角梯形,,
側(cè)面為正三角形,,.如圖4所示.

(1) 證明:平面;
(2) 求四棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐中,的中點(diǎn),,,且,,又.

(1) 證明:;
(2) 證明:;
(3) 求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知ABCD-A1B1C1D1為單位正方體,黑白兩個螞蟻從點(diǎn)A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”,白螞蟻爬行的路線是AA1→A1D1→……,黑螞蟻爬行的路線是AB→BB1→……,它們都遵循如下規(guī)則:所爬行的第與第段所在直線必須是異面直線(其中是自然數(shù)),設(shè)白,黑螞蟻都走完2011段后各停止在正方體的某個頂點(diǎn)處,這時黑,白兩螞蟻的距離是(   )
A.1B.C.D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分16分)
如圖,多面體中,兩兩垂直,平面平面
平面平面,.
(1)證明四邊形是正方形;
(2)判斷點(diǎn)是否四點(diǎn)共面,并說明為什么?
(3)連結(jié),求證:平面.

查看答案和解析>>

同步練習(xí)冊答案